【題目】2016年3月,某中學以“每天閱讀l小時”為主題,對學生最喜愛的書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)請把折線統(tǒng)計圖(圖1)補充完整;
(2)如果這所中學共有學生900名,那么請你估算最喜愛科普類書籍的學生人數(shù).
【答案】(1)補全圖形詳見解析;(2)240人.
【解析】
試題分析:(1)用文學的人數(shù)除以所占的百分比計算即可得總人數(shù),根據(jù)所占的百分比求出藝術和其它的人數(shù),然后補全折線圖即可;
(2)用總人數(shù)乘以科普所占的百分比,計算即可得解.
試題解析:(1)一共調(diào)查了45÷30%=150(名),
藝術的人數(shù):150×20%=30名,
其它的人數(shù):150﹣(40+45+20+30)=15名;
補全折線圖如圖:
(2)最喜愛科普類書籍的學生人數(shù)為:×900=240(人),
答:估算最喜愛科普類書籍的學生有240人.
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后停留一段時間,然后分別按原速一同駛往甲地后停車。設慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象,請根據(jù)圖象解決下列問題:
(1)甲、乙兩地之間的距離為________千米;
(2)求快車和慢車的速度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的分式方程 無解,則m的值為_______.
【答案】-4,-6
【解析】試題分析:去分母得:x(m+2x)-2x(x-3)=2(x-3),
(m+4)x=-6,
當m+4≠0時,
x=≠0,
∵分式方程無解,
∴x-3=-3=0,
解得:m=-6;
當m+4=0即m=-4時,
整式方程無解,分式方程也無解,符合題意,
故m的值為-4或-6.
故答案為:-4或-6.
【題型】填空題
【結束】
19
【題目】計算:
(1) (2)
(3) (4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)前夕,小東的父母準備購買若干個粽子和咸鴨蛋(每個粽子的價格相同,每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.5元,花35元購買粽子的個數(shù)與花20元購買咸鴨蛋的個數(shù)相同.粽子與咸鴨蛋的價格各是多少?
【答案】粽子和咸鴨蛋的單價分別為每個3.5元、2元
【解析】試題分析:設咸鴨蛋的價格為x元,則粽子的價格為(1.5+x)元,根據(jù)花35元購買粽子的個數(shù)與花20元購買咸鴨蛋的個數(shù)相同,列出分式方程,求出方程的解得到x的值,即可得到結果.
試題解析:
解:設咸鴨蛋的價格為x元,則粽子的價格為(1.5+x)元,
根據(jù)題意得:
,
去分母得:35x=30+20x,
解得:x=2,
經(jīng)檢驗x=2是分式方程的解,且符合題意,
1.5+x=1.5+2=3.5(元),
故咸鴨蛋的價格為2元,粽子的價格為3.5元.
點睛:此題考查了分式方程的應用,分析題意,找到合適的等量關系是解決問題的關鍵.
【題型】解答題
【結束】
24
【題目】某書店為了迎接“讀書節(jié)”制定了活動計劃,陳經(jīng)理查看計劃書發(fā)現(xiàn):A類圖書的標價是B類圖書標價的1.5倍,若顧客用1080元購買圖書,能單獨購買A類圖書的數(shù)量恰好比單獨購買B類圖書的數(shù)量少20本.請求出A、B兩類圖書的標價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,n)、B(3,4)是一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象的兩個交點,過點D(t,0)(0<t<3)作x軸的垂線,分別交雙曲線和直線y1=kx+b于P、Q兩點
(1) 直接寫出反比例函數(shù)和一次函數(shù)的解析式
(2) 當t為何值時,S△BPQ=S△APQ
(3) 以PQ為邊在直線PQ的右側作正方形PQMN,試說明:邊QM與雙曲線(x>0)始終有交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于不等式組 下列說法正確的是( )
A.此不等式組無解
B.此不等式組有7個整數(shù)解
C.此不等式組的負整數(shù)解是﹣3,﹣2,﹣1
D.此不等式組的解集是﹣ <x≤2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E、F,連接EF.
(1)求證:PF平分∠BFD.
(2)若tan∠FBC= ,DF= ,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com