【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長(zhǎng).
【答案】(1)詳見解析;(2).
【解析】
試題分析:(1)連接OC,根據(jù)弦切角定理和切線的性質(zhì)可得∠CBE=∠A,∠ABD=90°,根據(jù)圓周角定理可得∠ACB=90°,即可得∠ACO+∠BCO=90°,∠BCD=90°,再由直角三角形斜邊上的中線性質(zhì)得出CE=BD=BE,根據(jù)等腰三角形的性質(zhì)可得∠BCE=∠CBE=∠A,即可證出∠ACO=∠BCE,所以∠BCE+∠BCO=90°,即CE⊥OC,所以CE是⊙O的切線;(2)由勾股定理求出AB的長(zhǎng),再由三角函數(shù)得出tanA==,求出BD=AB=,即可得出CE的長(zhǎng).
試題解析:(1)證明:連接OC,如圖所示:
∵BD是⊙O的切線,
∴∠CBE=∠A,∠ABD=90°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,∠BCD=90°,
∵E是BD中點(diǎn),
∴CE=BD=BE,
∴∠BCE=∠CBE=∠A,
∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCE,
∴∠BCE+∠BCO=90°,
即∠OCE=90°,CE⊥OC,
∴CE是⊙O的切線;
(2)解:∵∠ACB=90°,
∴AB=,
∵tanA==,
∴BD=AB=,
∴CE=BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,相等的一組是( )
A. 23和32 B. |﹣2|3和|2|3
C. ﹣(+2)和|﹣2| D. (﹣2)2和﹣22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,D為BA的延長(zhǎng)線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.
(1)求證:∠ACD=∠B;
(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn);
①求tan∠CFE的值;
②若AC=3,BC=4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形兩條邊長(zhǎng)分別為12、15,則這個(gè)三角形的周長(zhǎng)為( 。
A.27B.39C.42D.39或42
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(10分)AB∥DE,試問∠B、∠E、∠BCE有什么關(guān)系.
解:∠B+∠E=∠BCE
過點(diǎn)C作CF∥AB,
則____( )
又∵AB∥DE,AB∥CF,
∴____________( )
∴∠E=∠____( )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)﹣旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓.
(Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線段A′B的長(zhǎng)度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓,問:角α與角β滿足什么條件時(shí),直線BB′與⊙A′相切,請(qǐng)說明理由,并求此條件下線段A′B的長(zhǎng)度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓市民享受到更多的優(yōu)惠,某市針對(duì)乘坐地鐵的人群進(jìn)行了調(diào)查.
(1)為獲得乘坐地鐵人群的月均花費(fèi)信息,下列調(diào)查方式中比較合理是 ;
A.對(duì)某小區(qū)的住戶進(jìn)行問卷調(diào)查 B.對(duì)某班的全體同學(xué)進(jìn)行問卷調(diào)查
C.在市里的不同地鐵站,對(duì)進(jìn)出地鐵的人進(jìn)行問卷調(diào)查
(2)調(diào)查小組隨機(jī)調(diào)查了該市1000人上一年乘坐地鐵的月均花費(fèi)(單位:元),繪制了
頻數(shù)分布直方圖,如圖所示.
① 根據(jù)圖中信息,估計(jì)平均每人乘坐地鐵的月均花費(fèi)的范圍是 元;
A.20—60 B.60—120 C.120—180
②你是用_________(填統(tǒng)計(jì)概念)對(duì)①進(jìn)行估計(jì)的。
③為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個(gè)折扣線,計(jì)劃使30%左右的人獲得折扣優(yōu)惠.根據(jù)圖中信息,乘坐地鐵的月均花費(fèi)達(dá)到 元的人可以享受扣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在選取樣本時(shí),下列說法不正確的是( )
A. 所選樣本必須足夠大 B. 所選樣本要具有代表性
C. 所選樣本可按自己的愛好抽取 D. 僅僅增加調(diào)查人數(shù)不一定能提高調(diào)查質(zhì)量
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com