【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點(diǎn)P繞點(diǎn)T(0,t)(t>0)旋轉(zhuǎn)180°得到點(diǎn)Q,那么稱(chēng)線段QP為“拓展帶”,點(diǎn)Q為點(diǎn)P的“拓展點(diǎn)”.

(1)當(dāng)t=3時(shí)點(diǎn)(0,0)的“拓展點(diǎn)坐標(biāo)為 ,點(diǎn)(﹣1,1)拓展點(diǎn)”坐標(biāo)為 ;

(2)如果 t>1,當(dāng)點(diǎn)M(2,1)的“拓展點(diǎn)”N在函數(shù)y=﹣的圖象上時(shí),求t的值;

(3)當(dāng)t=1時(shí),點(diǎn)Q為點(diǎn)P(2,0)的“拓展點(diǎn)”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”P(pán)Q有交點(diǎn),求m的取值范圍.

【答案】(1)(0,6),(1,5);(2);(3)m的取值范圍為.

【解析】

(1)根據(jù)中心對(duì)稱(chēng)可得結(jié)果;

(2)把點(diǎn)M坐標(biāo)帶入反比例函數(shù)解析式即可得解;

(3)因?yàn)閽佄锞與“拓展帶”PQ有交點(diǎn),所以將點(diǎn)P、Q坐標(biāo)以分別代入解析式即可解答.

(1)點(diǎn)(0,0)的拓展點(diǎn)坐標(biāo)為(0,6),點(diǎn)(-1,1)的拓展點(diǎn)坐標(biāo)為(1,5).

(2)當(dāng)t>1時(shí),點(diǎn)M(2,1)的拓展點(diǎn)N-2,2t-1).

∵點(diǎn)N在函數(shù)的圖象上,

.

.

(3)當(dāng)t=1時(shí),點(diǎn)P(2,0)的“拓展點(diǎn)Q-2,2),

當(dāng)拋物線經(jīng)過(guò)點(diǎn)P(2,0)時(shí),可得.

當(dāng)拋物線經(jīng)過(guò)點(diǎn)Q-2,2)時(shí),可得.

m的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BDCD,過(guò)點(diǎn)DBC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo)及△ACM的最小周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BEO的直徑,點(diǎn)A和點(diǎn)D0上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn)C.

1)若∠ADE=25°,求∠C的度數(shù);

2)若AC=4,CE=2,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱(chēng)p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱(chēng)為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.

(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒(méi)有不變值?如果有,直接寫(xiě)出其不變長(zhǎng)度;

(2)函數(shù)y=2x2-bx.

①若其不變長(zhǎng)度為零,求b的值;

②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;

(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1G2兩部分組成,若其不變長(zhǎng)度q滿(mǎn)足0≤q≤3,m的取值范圍為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=2x2+m.(1)若點(diǎn)(-2,y1)與(3y2)在此二次函數(shù)的圖象上,則y1_________y2(填、“=”);(2)如圖,此二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,-4),正方形ABCD的頂點(diǎn)C、Dx軸上,A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣(x+1)(x3)x軸分別交于點(diǎn)A、B(點(diǎn)AB的右側(cè)),與y軸交于點(diǎn)CP是△ABC的外接圓.

(1)直接寫(xiě)出點(diǎn)A、B、C的坐標(biāo)及拋物線的對(duì)稱(chēng)軸;

(2)P的半徑;

(3)點(diǎn)D在拋物線的對(duì)稱(chēng)軸上,且∠BDC90°,求點(diǎn)D縱坐標(biāo)的取值范圍;

(4)E是線段CO上的一個(gè)動(dòng)點(diǎn),將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得線段AF,求線段OF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的周長(zhǎng)為21,底邊BC=5,AB的垂直平分線DEAB于點(diǎn)D,AC于點(diǎn)E,則△BEC的周長(zhǎng)為(  )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案