【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)m,當(dāng)其自變量的值為m時,其函數(shù)值等于﹣m,則稱﹣m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個反向值時,其反向距離n為零.

例如,圖中的函數(shù)有4,﹣1兩個反向值,其反向距離n等于5

1)分別判斷函數(shù)y=﹣x+1y,yx2有沒有反向值?如果有,直接寫出其反向距離;

2)對于函數(shù)yx2b2x,

①若其反向距離為零,求b的值;

②若﹣1≤b≤3,求其反向距離n的取值范圍;

3)若函數(shù)y請直接寫出這個函數(shù)的反向距離的所有可能值,并寫出相應(yīng)m的取值范圍.

【答案】1yx2有反向值,反向距離是1;(2)①b=±1;②0n8;(3)當(dāng)m2m≤﹣2時,n2,當(dāng)﹣2m2時,n4

【解析】

(1)根據(jù)題目中的新定義可以分別計算出各個函數(shù)是否有方向值,有反向值的可以求出相應(yīng)的反向距離;

(2)①根據(jù)題意可以求得相應(yīng)的b的值;

根據(jù)題意和b的取值范圍可以求得相應(yīng)的n的取值范圍;

(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.

(1)由題意可得,

當(dāng)﹣m=﹣m+1時,該方程無解,故函數(shù)y=﹣x+1沒有反向值,

當(dāng)﹣m時,m±1,n1(1)2,故y有反向值,反向距離為2,

當(dāng)﹣mm2,得m0m=﹣1,n0(1)1,故yx2有反向值,反向距離是1;

(2)①令﹣mm2b2m,

解得,m0mb21

反向距離為零,

∴|b210|0,

解得,b±1

令﹣mm2b2m,

解得,m0mb21

n|b210||b21|,

1≤b≤3,

∴0≤n≤8;

(3)∵y

當(dāng)xm時,

mm23m,得m0m2,

n202,

m2m2

當(dāng)xm時,

m=﹣m23m,

解得,m0m=﹣4,

n0(4)4

2m≤2,

由上可得,當(dāng)m2m2時,n2

當(dāng)﹣2m≤2時,n4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=5,面積為20,∠BAD90°,⊙O與邊AB、AD都相切,AO=2,則⊙O的半徑長等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動到點(diǎn)B.動點(diǎn)Q同時從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動到點(diǎn)B.設(shè)APQ的面積為y(cm2).運(yùn)動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,潘老師給出如下定義:如果一個三角形有一邊上的高線等于這條邊的一半,那么稱這個三角形為垂美三角形,這條邊稱為這個三角形的垂美邊”.

概念理解:

(1)如圖①,已知∠A90°ABAC,請證明等腰RtABC一定是垂美三角形”.

探索運(yùn)用:

(2)已知等腰△ABC垂美三角形,請求出頂角的度數(shù).

能力提升:

(3)如圖②,在直角坐標(biāo)系中,點(diǎn)Ax軸正半軸上動點(diǎn),在反比例函數(shù)的圖象上是否存在點(diǎn)B,使△OAB垂美三角形,且OA,OB均為垂美邊,若存在,請求出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1,B1,C1,D1,E1,F1分別是正六邊形ABCDEF六條邊的中點(diǎn),連接AB1,BC1CD1,DE1,EF1,FA1后得到六邊形GHIJKL,則S六邊形GHIJKIS六邊形ABCDEF的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學(xué)家陳景潤哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)都表示為兩個素數(shù)的和”.如20=3+17.

(1)從7、11、19、23這4個素數(shù)中隨機(jī)抽取一個,則抽到的數(shù)是7的概率是 ;

(2)從7、11、19、23這4個素數(shù)中隨機(jī)抽取1個數(shù),再從余下的3個數(shù)中隨機(jī)抽取1個數(shù),用畫樹狀圖或列表的方法,求抽到的兩個素數(shù)之和等于30的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知∠CAB60°,D、E分別是邊AB、AC上的點(diǎn),且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生自主創(chuàng)業(yè),集資5萬元開品牌專賣店,已知該品牌商品成本為每件a元,市場調(diào)查發(fā)現(xiàn)日銷售量y(件)與銷售價x(元/件)之間存在一次函數(shù)關(guān)系如表:

銷售價x(元/件)

110

115

120

125

130

銷售量y(件)

50

45

40

35

30

若該店某天的銷售價定為110/件,雇有3名員工,則當(dāng)天正好收支平衡(其中支出=商品成本+員工工資+應(yīng)支付其它費(fèi)用):已知員工的工資為每人每天100元,每天還應(yīng)支付其它費(fèi)用為200元(不包括集資款).

(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

(2)該店現(xiàn)有2名員工,試求每件服裝的銷售價定為多少元時,該服裝店每天的毛利潤最大:(毛利潤銷售收入一商品成本一員工工資一應(yīng)支付其他費(fèi)用)

(3)在(2)的條件下,若每天毛利潤全部積累用于一次性還款,而集資款每天應(yīng)按其萬分之二的利率支付利息,則該店最少需要多少天(取整數(shù))才能還清集資款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

同步練習(xí)冊答案