【題目】已知拋物線與軸交于A,B兩點(A在B左邊),與軸交于C點,頂點為P,OC=2AO.
(1)求與滿足的關系式;
(2)直線AD//BC,與拋物線交于另一點D,△ADP的面積為,求的值;
(3)在(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點,分別過M、N且與拋物線僅有一個公共點的兩條直線交于點G,求OG長的最小值.
【答案】(1);(2);(3).
【解析】
(1)將拋物線解析式進行因式分解,可求出A點坐標,得到OA長度,再由C點坐標得到OC長度,然后利用OC=2AO建立等量關系即可得到關系式;
(2)利用待定系數法求出直線BC的k,根據平行可知AD直線的斜率k與BC相等,可求出直線AD解析式,與拋物線聯(lián)立可求D點坐標,過P作PE⊥x軸交AD于點E,求出PE即可表示△ADP的面積,從而建立方程求解;
(3)為方便書寫,可設拋物線解析式為:,設,,過點M的切線解析式為,兩拋物線與切線聯(lián)立,由可求k,得到M、N的坐標滿足,將(1,-1)代入,推出G為直線上的一點,由垂線段最短,求出OG垂直于直線時的值即為最小值.
解:(1)
令y=0,,解得,
令x=0,則
∵, A在B左邊
∴A點坐標為(-m,0),B點坐標為(4m,0),C點坐標為(0,-4am2)
∴AO=m,OC=4am2
∵OC=2AO
∴4am2=2m
∴
(2)∵
∴C點坐標為(0,-2m)
設BC直線為,代入B(4m,0),C(0,-2m)得
,解得
∵AD∥BC,
∴設直線AD為,代入A(-m,0)得,,
∴
∴直線AD為
直線AD與拋物線聯(lián)立得,
,解得或
∴D點坐標為(5m,3m)
又∵
∴頂點P坐標為
如圖,過P作PE⊥x軸交AD于點E,則E點橫坐標為,代入直線AD得
∴PE=
∴S△ADP=
解得
∵m>0
∴
∴.
(3)在(2)的條件下,可設拋物線解析式為:,
設,,過點M的切線解析式為,
將拋物線與切線解析式聯(lián)立得:
,整理得,
∵,
∴方程可整理為
∵只有一個交點,
∴
整理得即
解得
∴過M的切線為
同理可得過N的切線為
由此可知M、N的坐標滿足
將代入整理得
將(1,-1)代入得
在(2)的條件下,拋物線解析式為,即
∴
整理得
∴G點坐標滿足,即G為直線上的一點,
當OG垂直于直線時,OG最小,如圖所示,
直線與x軸交點H(5,0),與y軸交點F(0,)
∴OH=5,OF=,FH=
∵
∴
∴OG的最小值為.
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸交于點C,與y軸交于點B,拋物線經過B、C兩點.
(1)求拋物線的解析式;
(2)如圖,點E是拋物線上的一動點(不與B,C兩點重合),△BEC面積記為S,S取何值時,對應的點E有且只有兩個?
(3)直線x=2交直線BC于點M,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A,B的坐標分別為(1,0),(2,0).若二次函數y=x2+(a﹣3)x+3的圖象與線段AB只有一個交點,則a的取值范圍是_______________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某一房間內A、B兩點之間設有探測報警裝置,小車(不計大。┰诜块g內運動,當小車從AB之間經過時,將觸發(fā)報警.現將A、B兩點放置于平面直角坐標系xOy中(如圖),已知點A,B的坐標分別為(0,4),(4,4),小車沿拋物線y=ax2﹣2ax﹣3a(a<0)運動.若小車在運動過程中只觸發(fā)一次報警裝置,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點A在x軸的負半軸上,點B的坐標為(﹣2,﹣4),拋物線y=ax2+bx的對稱軸為x=﹣5,該拋物線經過點A、B,點E是AB與對稱軸x=﹣5的交點.
(1)如圖1,點P為直線AB下方的拋物線上的任意一點,在對稱軸x=﹣5上有一動點M,當△ABP的面積最大時,求|PM﹣OM|的最大值以及點P的坐標.
(2)如圖2,把△ABO沿射線BA方向平移,得到△CDF,其中點C、D、F分別是點A、B、O的對應點,且點F與點O不重合,平移過程中,是否存在這樣的點F,使得以點A、E、F為頂點的三角形為等腰三角形?若存在,直接寫出點F的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列一元二次方程兩實數根和為﹣4的是( )
A. x2+2x﹣4=0 B. x2﹣4x+4=0 C. x2+4x+10=0 D. x2+4x﹣5=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,其中圖①有3個小菱形,圖②有7個小菱形,圖③有13個小菱形……請根據排列規(guī)律完成下列問題:
(1)請寫出圖⑤中小菱形的個數;
(2)根據表中規(guī)律猜想,圖中小菱形的個數與的關系式(不用說理);
(3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE.記△ADE,△BCE的面積分別為S1,S2,( 。
A. 若2AD>AB,則3S1>2S2 B. 若2AD>AB,則3S1<2S2
C. 若2AD<AB,則3S1>2S2 D. 若2AD<AB,則3S1<2S2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數y=的圖象在第二象限內交于點A,過點A作AB⊥x軸于點B,OB=2.
(1)求該反比例函數的表達式;
(2)若點P是該反比例函數圖象上一點,且△PAB的面積為4,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com