【題目】長方形為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)在第三象限.

1)如圖1,若過點(diǎn)的直線與長方形的邊交于點(diǎn)且將長方形的面積分為兩部分,求點(diǎn)的坐標(biāo);

2)如圖2,軸負(fù)半軸上一點(diǎn),且軸正半軸上一動點(diǎn),的平分線的延長線于點(diǎn)在點(diǎn)運(yùn)動的過程中,的值是否變化?若不變求出其值;若變化,請說明理由.

【答案】1)點(diǎn)P的坐標(biāo)為(-3,0)或(0,-);(2

【解析】

1)利用長方形OABC的面積分為14兩部分,得出等式求出AP的長,即可得出P點(diǎn)坐標(biāo),再求出PC的長,即可得出OP的長,進(jìn)而得出答案;
2)首先求出∠MCF=2CMB,即可得出∠CNM=AMC-NCM=2BMC-2DCM=2BMC-2EMC=2D,得出答案.

1)如圖1,若過點(diǎn)B的直線BP與邊OA交于點(diǎn)P,依題意可知:×AB×AP=×OA×OC,


×3×AP=×5×3
AP=2
OA=5,
OP=3,
P-3,0),
若過點(diǎn)B的直線BP與邊OC交于點(diǎn)P,依題意可知:×BC×PC=×OA×OC
×5×PC=×5×3,
PC=
OC=3,
OP=,
P0-).
綜上所述,點(diǎn)P的坐標(biāo)為(-3,0)或(0,-).
2)如圖2,延長BC至點(diǎn)F
∵四邊形OABC為長方形,
OABC
∴∠CBM=AMB,∠AMC=MCF
∵∠CBM=CMB,
∴∠MCF=2CMB
過點(diǎn)MMECDBC于點(diǎn)E
∴∠EMC=MCD
又∵CD平分∠MCN,
∴∠NCM=2EMC
∴∠D=BME=CMB-EMC
CNM=AMC-NCM=2BMC-2DCM=2BMC-2EMC=2D,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全運(yùn)會射擊比賽的選拔賽中,運(yùn)動員甲10次射擊成績的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)


3

2


1)根據(jù)統(tǒng)計(jì)表(圖)中提供的信息,補(bǔ)全統(tǒng)計(jì)表及扇形統(tǒng)計(jì)圖;

2)已知乙運(yùn)動員10次射擊的平均成績?yōu)?/span>9環(huán),方差為12,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰去?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請判斷BCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PQ△ABCBC邊上的兩點(diǎn),且BP=AP=AQ=QC,∠PAQ=60°.

(1)求證:AB=AC;

(2)∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(n,3)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+6﹣ >0時(shí),x的取值范圍;
(3)若M是x軸上一點(diǎn),S△MOB=S△AOB , 求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )

A. 1個(gè); B. 2個(gè); C. 3個(gè); D. 4個(gè);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】常德市為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過10噸時(shí),超過的部分每噸按調(diào)節(jié)價(jià)收費(fèi).若王大爺家一月份用水16噸,需交水費(fèi)49元,二月份用水20噸,需交水費(fèi)63.

1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);

2)若王大爺家三月份交了77元的水費(fèi),請問他家用了多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1∥l2,l3、l4l1l2分別交于點(diǎn)A、BC、D,點(diǎn)P在直線l3l4上且不與點(diǎn)A、B、CD重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3

1)若點(diǎn)P在圖(1)位置時(shí),求證:∠3=∠1+∠2;

2)若點(diǎn)P在圖(2)位置時(shí),請直接寫出∠1、∠2、∠3之間的關(guān)系;

3)若點(diǎn)P在圖(3)位置時(shí),寫出∠1∠2、∠3之間的關(guān)系并給予證明;

4)若點(diǎn)PC、D兩點(diǎn)外側(cè)運(yùn)動時(shí),請直接寫出∠1、∠2、∠3之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角板(含30°、60°角)和一把直尺擺放位置如圖所示,直尺與三角板的一角相交于點(diǎn)A,一邊與三角板的兩條直角邊分別相交于點(diǎn)D、點(diǎn)E,且CD=CE,點(diǎn)F在直尺的另一邊上,那么∠BAF的大小為°.

查看答案和解析>>

同步練習(xí)冊答案