【題目】已知拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(﹣30),(0,﹣3).

1)求拋物線的表達式.

2)已知點(m,k)和點(n,k)在此拋物線上,其中mn,請判斷關于t的方程t2+mt+n0是否有實數(shù)根,并說明理由.

【答案】1yx2+2x3;(2)方程有兩個不相等的實數(shù)根.

【解析】

1)將已知點的坐標代入二次函數(shù)列出方程組,解之即可;

2)因為(m,k),(nk)是關于直線x=﹣1的對稱點,所以=﹣1 m=﹣n2,于是 b24acm24n=(﹣n224nn2+40,所以此方程有兩個不相等的實數(shù)根.

1)拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(﹣3,0),(0,3

9a3b+c0

解得a1b2,c=﹣3

∴拋物線yx2+2x3

2)∵點(mk),(n,k)在此拋物線上,

∴(m,k),(n,k)是關于直線x=﹣1的對稱點,

=﹣1 m=﹣n2

b24acm24n=(﹣n224nn2+40

∴此方程有兩個不相等的實數(shù)根.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】、如圖,大樓AB的高為16米,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°.其中A、C兩點分別位于BD兩點正下方,且AC兩點在同一水平線上,求塔CD的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以直角邊為直徑的交斜邊于點.點為邊的中點,連接并延長交的延長線于點,

1)求證:直線的切線;

2)若,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)

(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;

(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;

(3)x軸上找一點P,使PAPB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】移動通信公司建設的鋼架信號塔(如圖1),它的一個側面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點A、點B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3A3,….若AB3米,sinα,則水平鋼條A2B2的長度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=6,點EAB上一點,AE=2,點FAD上,將AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸分別交于兩點,點軸的正半軸上,且的中點.

1)求直線的解析式;

2)點從點出發(fā),沿射線以每秒個單位長度的速度運動,運動時間為秒,的面積為的函數(shù)關系式,并直接寫出自變量的取值范圍;

3)在(2)的條件下,是否存在點使是以為腰的等腰三角形,若存在,直接寫出點的坐標;若不存在;請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1所示矩形ABCD中,BC=xCD=y,yx滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EFC點,MEF的中點,則下列結論正確的序號是___.①當x=3時,EC<EM;②當y=9時,EC>EM③當x增大時,ECCF的值增大;④當y增大時,BEDF的值不變。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作RtABC,邊BCx軸上,點D為斜邊AC的中點,連結DB并延長交y軸于點E,若BCE的面積為4,則k=______

查看答案和解析>>

同步練習冊答案