【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若△BCE的面積為4,則k=______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是菱形ABCD的邊BC、CD上的點(diǎn),且∠EAF=∠D=60°,∠FAD=45°,則∠CFE的度數(shù)為( 。
A. 30° B. 45° C. 60° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了《整式的乘除》這一章之后,小明聯(lián)想到小學(xué)除法運(yùn)算時(shí),會碰到余數(shù)的問題,那么類比多項(xiàng)式除法也會出現(xiàn)余式的問題.例如,如果一個(gè)多項(xiàng)式(設(shè)該多項(xiàng)式為)除以的商為,余式為,那么這個(gè)多項(xiàng)式是多少?他通過類比小學(xué)除法的運(yùn)算法則:被除數(shù)=除數(shù)×商+余數(shù),推理出多項(xiàng)式除法法則:被除式=除式×商+余式.
請根據(jù)以上材料,解決下列問題:
(1)請你幫小明求出多項(xiàng)式;
(2)小明繼續(xù)探索,如果一個(gè)多項(xiàng)式除以商為,余式為,請你根據(jù)以上法則求出該多項(xiàng)式;
(3)上述過程中,小明把小學(xué)的除法運(yùn)算法則運(yùn)用在多項(xiàng)式除法運(yùn)算上,這里運(yùn)用的數(shù)學(xué)思想是_____.
A.類比思想 B.公理化思想 C.函數(shù)思想 D.?dāng)?shù)形結(jié)合思想
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的熱點(diǎn)問題,安全隱患主要是超速和超載.某中學(xué)九年級數(shù)學(xué)活動小組進(jìn)行了測試汽車速度的實(shí)驗(yàn),如圖,先在筆直的公路l旁選取一點(diǎn)A,在公路l上確定點(diǎn)B、C,使得AC⊥l,∠BAC=60°,再在AC上確定點(diǎn)D,使得∠BDC=75°,測得AD=40米,已知本路段對校車限速是50千米/時(shí),若測得某校車從B到C勻速行駛用時(shí)10秒,問這輛車在本路段是否超速?請說明理由(參考數(shù)據(jù):=1.41,=1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接FE并延長,分別交CD的延長線于點(diǎn)M、N,∠BME=∠CNE,求證:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD為內(nèi)角平分線,CE為外角平分線,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點(diǎn)I, IE⊥B于E,下列結(jié)論:①∠BIE=∠CID;②S△ABC=IE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結(jié)論是_______________ (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機(jī)飛行至C處時(shí)、測得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)B是線段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AE和CD.
(1)求證:AE=CD;
(2)如圖2,點(diǎn)P、Q分別是AE、CD的中點(diǎn),試判斷△PBQ的形狀,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com