【題目】拋物線y=﹣x2+2x+6的對稱軸是( 。

A.直線x1B.直線x=﹣1C.直線x=﹣2D.直線x2

【答案】A

【解析】

先把一般式化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)確定拋物線的對稱軸方程。

∵拋物線y=﹣x2+2x+6=﹣(x12+7

∴該拋物線的對稱軸是直線x1,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:3ab2+6ab+3a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(山東泰安,第27題)(10分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.

(1)求證:ACCD=CPBP;

(2)若AB=10,BC=12,當PD∥AB時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了抓住世博會商機,某商店決定購進A、B兩種世博會紀念品,若購進A種紀念品10件,B種紀念品5件,需要1000元;若購進A種紀念品5件,B種紀念品3件,需要550元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定拿出4000元全部用來購進這兩種紀念品,考慮市場需求,要求購進A種紀念品的數(shù)量不少于B種紀念品數(shù)量的6倍,且不超過B鐘紀念品數(shù)量的8倍,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設方程的兩個實數(shù)根分別為x1 , x2(用含m的代數(shù)式表示);
①求方程的兩個實數(shù)根x1 , x2(用含m的代數(shù)式表示);
②若mx1<8﹣4x2 , 直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 2016湖北鄂州第23題)某賓館有50個房間供游客居住,當每個房間定價120元時,房間會全部住滿,當每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設每個房間定價增加10 x元(x為整數(shù))。

(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關系式。

(4分)設賓館每天的利潤為W元,當每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?

(4分)某日,賓館了解當天的住宿的情況,得到以下信息:當日所獲利潤不低于5000元,賓館為游客居住的房間共支出費用沒有超過600元,每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,射線AB∥CD,∠CAB的角平分線交射線CD于點P1

(1)若∠C=50°,求∠AP1C的度數(shù).
(2)如圖1,作∠P1AB的角平分線交射線CD于點P2 . 猜想∠AP1C與∠AP2C的數(shù)量關系,并說明理由.
(3)如圖2,在(2)的條件下,依次作出∠P2AB的角平分線AP3 . ∠P3AB的角平分線AP4 , ……“∠Pn-1AB的角平分線APn . 其中點P3,P4…,Pn-1Pn都在射線CD上,若∠APnC=x,直接寫出∠C的度數(shù)(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的∠ABC和∠ACB的平分線BE,CF交于點G,若∠BGC=3∠A,則∠A=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個n邊形,除去一個內(nèi)角α外,其余內(nèi)角和等于1500°,則這個內(nèi)角α=_____°.

查看答案和解析>>

同步練習冊答案