【題目】下列說(shuō)法中錯(cuò)誤的是( )
A .在函數(shù)y=-x2中,當(dāng)x=0時(shí)y有最大值0
B.在函數(shù)y=2x2中,當(dāng)x>0時(shí)y隨x的增大而增大
C.拋物線y=2x2,y=-x2,中,拋物線y=2x2的開(kāi)口最小,拋物線y=-x2的開(kāi)口最大
D.不論a是正數(shù)還是負(fù)數(shù),拋物線y=ax2的頂點(diǎn)都是坐標(biāo)原點(diǎn)
【答案】C
【解析】由函數(shù)的解析式y=-x2,可知a=-1<0,得到函數(shù)的開(kāi)口向下,有最大值y=0,故A正確;
由函數(shù)的解析式y=2x2,可知其對(duì)稱(chēng)軸為y軸,對(duì)稱(chēng)軸的左邊(x<0),y隨x增大而減小,對(duì)稱(chēng)軸的右邊(x>0),y隨x增大而增大,故B正確;
根據(jù)二次函數(shù)的性質(zhì),可知系數(shù)a決定開(kāi)口方向和開(kāi)口大小,且a的值越大開(kāi)口越小,可知拋物線y=2x2的開(kāi)口最小,拋物線y=-x2的開(kāi)口第二小,而開(kāi)口最大,故不正確;
不論a是正數(shù)還是負(fù)數(shù),拋物線y=ax2的頂點(diǎn)都是坐標(biāo)原點(diǎn),正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C、D、B、F在一條直線上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.
求證:(1)△ABF≌△CDE;
(2)CE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城市,優(yōu)化城市環(huán)境,節(jié)約能源,某市公交公司決定購(gòu)買(mǎi)一批共10臺(tái)全新的混合動(dòng)力公交車(chē),現(xiàn)有A、B兩種型號(hào),其中每臺(tái)的價(jià)格,年省油量如下表:
A | B | |
價(jià)格(萬(wàn)元/臺(tái)) | a | b |
節(jié)省的油量(萬(wàn)升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購(gòu)買(mǎi)一臺(tái)A型車(chē)比購(gòu)買(mǎi)一臺(tái)B型車(chē)多10萬(wàn)元,購(gòu)買(mǎi)3臺(tái)A型車(chē)比購(gòu)買(mǎi)4臺(tái)B型車(chē)少30萬(wàn)元.
(1)請(qǐng)求出a和b的值;
(2)若購(gòu)買(mǎi)這批混合動(dòng)力公交車(chē)(兩種車(chē)型都要有)每年能節(jié)省的油量不低于21.6萬(wàn)升,請(qǐng)問(wèn)有幾種購(gòu)車(chē)方案?請(qǐng)寫(xiě)出解答過(guò)程.
(3)求(2)中最省錢(qián)的購(gòu)車(chē)方案及所需的購(gòu)車(chē)款.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,點(diǎn)在邊上,點(diǎn)在邊上,將折疊,使點(diǎn)落在邊上的點(diǎn)處,則________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線OC:y=x交于點(diǎn)C.
(1)若直線AB解析式為.
①求點(diǎn)C的坐標(biāo);
②根據(jù)圖象,求關(guān)于x的不等式0<-x+10<x的解集;
(2)如下圖,作∠AOC的平分線ON,若AB⊥ON,垂足為E,ΔOAC的面積為9,且OA=6,P、Q分別為線段OA、OE上的動(dòng)點(diǎn),連接AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值:若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABOC中點(diǎn)A坐標(biāo)為(4,5),點(diǎn)E是x軸上一動(dòng)點(diǎn),連接AE,把∠B沿AE折疊,當(dāng)點(diǎn)B落在y軸上時(shí)點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,AD是∠BAC的角平分線,若AB=AC+CD.那么∠ACB 與∠ABC有怎樣的數(shù)量關(guān)系? 小明通過(guò)觀察分析,形成了如下解題思路:
如圖2,延長(zhǎng)AC到E,使CE=CD,連接DE,由AB=AC+CD,可得AE=AB,又因?yàn)?/span>AD是∠BAC的平分線,可得△ABD≌△AED,進(jìn)一步分析就可以得到∠ACB 與∠ABC的數(shù)量關(guān)系.
(1) 判定△ABD 與△AED 全等的依據(jù)是______________(SSS,SAS,ASA,AAS 從其中選擇一個(gè));
(2)∠ACB 與∠ABC的數(shù)量關(guān)系為:___________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,BF⊥AC.且已知AB=CD.
(1)試問(wèn)DB平分EF能成立嗎?請(qǐng)說(shuō)明理由.
(2)若△DEC的邊EC沿AC方向移動(dòng),其余條件不變,如圖,上述結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,OABC的邊OC在x軸的正半軸上,OC=5,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(1,4).
(1)求反比例函數(shù)的關(guān)系式和點(diǎn)B的坐標(biāo);
(2)如圖②,過(guò)BC的中點(diǎn)D作DP∥x軸交反比例函數(shù)圖象于點(diǎn)P,連接AP、OP,求△AOP的面積;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com