【題目】已知,在下列各圖中,點(diǎn)O為直線AB上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.
(1)如圖1,三角板一邊OM在射線OB上,另一邊ON在直線AB的下方,則∠BOC的度數(shù)為 °,∠CON的度數(shù)為 °;
(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線AB的下方,此時(shí)∠BON的度數(shù)為 °;
(3)請(qǐng)從下列(A),(B)兩題中任選一題作答.
我選擇: .
(A)在圖2中,延長(zhǎng)線段NO得到射線OD,如圖3,則∠AOD的度數(shù)為 °;∠DOC與∠BON的數(shù)量關(guān)系是∠DOC ∠BON(填“>”、“=”或“<”);
(B)如圖4,MN⊥AB,ON在∠AOC的內(nèi)部,若另一邊OM在直線AB的下方,則∠COM+∠AON的度數(shù)為 °;∠AOM﹣∠CON的度數(shù)為 °.
【答案】(1)120;150.(2)30°.(3)A(或B);30;=;150;30.
【解析】
試題(1)利用兩角互補(bǔ),即可得出結(jié)論;
(2)根據(jù)OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度數(shù);
(3)根據(jù)直角三角板MON各角的度數(shù)以及圖中各角的關(guān)系即能得出結(jié)論.
解:(1)∵∠AOC=60°,∠BOC與∠AOC互補(bǔ),∠AON=90°
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.
故答案為:120;150.
(2)∵三角板一邊OM恰好在∠BOC的角平分線OE上,∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案為:30°.
(3)(A)∵∠AOD=∠BON(對(duì)頂角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(B)∵M(jìn)N⊥AB,
∴∠AON與∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,150
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案為:A(或B);30;=;150;30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校甲、乙兩班分別有一男生和一女生共4名學(xué)生報(bào)名競(jìng)選校園廣播播音員.
(1)若從甲、乙兩班報(bào)名的學(xué)生中分別隨機(jī)選1名學(xué)生,則所選的2名學(xué)生性別相同的概率是多少?
(2)若從報(bào)名的4名學(xué)生中隨機(jī)選2名,求這2名學(xué)生來(lái)自同一班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點(diǎn)D,E.
(1)求證:AE=2CE;
(2)連接CD,請(qǐng)判斷△BCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“愛(ài)我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說(shuō)法中錯(cuò)誤的是( 。
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長(zhǎng)為的正方形, 區(qū)是邊長(zhǎng)為的正方形.
(1)列式表示每個(gè)區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);
(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);
(3)如果, ,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)了臺(tái)數(shù)相同A型、B型兩種單價(jià)不同的計(jì)算機(jī),B型機(jī)的單價(jià)比A型機(jī)的便宜0.24萬(wàn)元,已知A型機(jī)總價(jià)值120萬(wàn)元,B型計(jì)算機(jī)總價(jià)值為80萬(wàn)元,求A型、B型兩種計(jì)算機(jī)的單價(jià),設(shè)A型計(jì)算機(jī)的單價(jià)是x萬(wàn)元,可列方程_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、C、F、B四點(diǎn)在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點(diǎn)C、點(diǎn)F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE⊥AC于E,CF⊥AB于F,AE=AF,BE與CF交于點(diǎn)D,則:①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上.以上結(jié)論正確的是( )
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正整數(shù)1,2,3,4,…,2 009排列成如圖所示的一個(gè)表.
(1)用一正方形在表中隨意框住4個(gè)數(shù),把其中最小的數(shù)記為x,另三個(gè)數(shù)用含x的式子表示出來(lái),從小到大依次是__ __,__ __,__ __;
(2)在(1)前提下,當(dāng)被框住的4個(gè)數(shù)之和等于416時(shí),x的值是多少?
(3)在(1)前提下,被框住的4個(gè)數(shù)之和能否等于622?如果能,請(qǐng)求出此時(shí)x的值;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com