【題目】如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DF平分∠EDC交BC于F,DE⊥DC交AB于點(diǎn)E,連結(jié)EF.
(1)證明:EF=CF
(2)當(dāng)tan∠ADE =時,求EF的長.
【答案】(1)證明見解析;(2)5.
【解析】
試題分析:(1)過D作DG⊥BC于G,由已知可得四邊形ABGD為正方形,然后利用正方形的性質(zhì)和已知條件證明△ADE≌△GDC,接著利用全等三角形的性質(zhì)證明△EDF≌△CDF,
(2)由tan∠ADE=,根據(jù)已知條件可以求出AE=GC=2.設(shè)EF=x,則BF=8-CF=8-x,BE=4.在Rt△BEF中根據(jù)勾股定理即可求出x,也就求出了EF.
試題解析:(1)過D作DG⊥BC于G.
由已知可得四邊形ABGD為正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
,
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=,
∴AE=GC=2.
∴BC=8,
BE=4,設(shè)CF=x,則BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到三角形三個頂點(diǎn)的距離相等的點(diǎn)是三角形( )的交點(diǎn).
A.三個內(nèi)角平分線
B.三邊垂直平分線
C.三條中線
D.三條高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)某工程承包方指定由甲、乙兩個工程隊(duì)完成某項(xiàng)工程,若由甲工程隊(duì)單獨(dú)做需要40天完成,現(xiàn)在甲、乙兩個工程隊(duì)共同做20天后,由于甲工程隊(duì)另有其他任務(wù)不再做該工程,剩下的工程由乙工程隊(duì)再單獨(dú)做了20天才完成任務(wù).
(1)求乙工程隊(duì)單獨(dú)完成該工程需要多少天?
(2)如果工程承包方要求乙工程隊(duì)的工作時間不能超過30天,要完成該工程,甲工程隊(duì)至少要工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)求出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)的面積;
(2)畫出格點(diǎn)△ABC關(guān)于直線DE對稱的;
(3)在DE上畫出點(diǎn)Q,使△QAB的周長最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):0,-1,7,1,x的平均數(shù)為1,則這組數(shù)據(jù)的極差是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com