【題目】如圖,O是坐標原點,過點A(﹣1,0)的拋物線y=x2﹣bx﹣3與x軸的另一個交點為B,與y軸交于點C,其頂點為D點.
(1)求b的值以及點D的坐標;
(2)求△BCD的面積;
(3)連接BC、BD、CD,在x軸上是否存在點P,使得以A、C、P為頂點的三角形與△BCD相似?若存在,求出點P的坐標;若不存在,說明理由.
(4)在拋物線上是否存在點Q,使得以A、C、Q為頂點且以AC為直角邊的三角形為直角三角形?若存在,求出點Q的坐標;若不存在,說明理由.
【答案】(1)b=2 ;D(1,-4).(2)3;(3)存在,(0,0)(9,0).(4)(0,-3)、(,-)、(-1,0)、(,);
【解析】
(1)把點A(﹣1,0)代入y=x2﹣bx﹣3中,根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點坐標;
(2)先求得點B的坐標,然后由S△BCD=S△BDM+S梯形OCDM-S△OBC,即可求得答案;
(3)根據(jù)相似三角形的性質(zhì),分兩種情況,得出AP的長,根據(jù)線段的和差,可得P點坐標.
(4)利用兩點間的距離公式和勾股定理求得答案;
解:(1)把A(-1,0)代入y=x2-bx-3,得1+b-3=0,
解得b=2.
∴y=x2-2x-3=(x-1)2-4,
∴D(1,-4).
(2)
∴C(0,-3),
點B與A關(guān)于直線x=1對稱,
∴點B(3,0),
設(shè)直線x=1交x軸于點M,
∴OM=1,BM=3-1=2,DM=4,
∴S△BCD=S△BDM+S梯形OCDM-S△OBC=×2×4+×(3+4)×1-×3×3=3;
(3)如圖,當y=0時,x2-2x-3=0,
解得x1=-1,x2=3,即A(-1,0),B(3,0),D(1,-4).
由勾股定理,得BC2=18,CD2=1+1=2,BD2=22+16=20,BC2+CD2=BD2,∠BCD=90°,
①當△APC∽△DCB時,=,即,解得AP=1,即P(0,0).
②當△ACP∽△DCB時,,即,解得AP=10,即P′(9,0).
綜上所述:點P的坐標(0,0)(9,0).
(4)設(shè)Q點坐標為(m,m 2-2m-3)
當∠QCA=90°,由AC2+CQ2=AQ2
得到:32+(-1)2+(m 2-2m-3+3)2+m 2=(m+1)2+( m 2-2m-3)2,
解得m=0或;
則Q點坐標為(0,-3)或(,-)
當∠QAC=90°,由AC2+AQ2=CQ2
得到:32+(-1)2 +(m+1)2+( m 2-2m-3)2=(m 2-2m-3+3)2+m 2,
解得m=-1或;
則Q點坐標為(-1,0)或(,)
綜上所述,Q點坐標為(0,-3)、(,-)、(-1,0)、(,);
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是2;
(1)求反比例函數(shù)的表達式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,正方形OABC的點A在軸上,點C在軸上,點B(4,4),點E在BC邊上.將△ABE繞點A 順時針旋轉(zhuǎn)90°,得△AOF,連接EF交軸于點D.
(Ⅰ)若點E的坐標為(,).求
(1)線段EF的長;
(2)點D的坐標;
(Ⅱ)設(shè)點E(,),,試用含的式子表示,并求出使取得最大值時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點A是⊙O上一點,直線l過點A;P是⊙O上的一個動點(不與點A重合),過點P作PB⊥l于點B,交⊙O于點E,直徑PD延長線交直線l于點F,點A是的中點.
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)本次被調(diào)查的家庭有 戶,表中m= ;
(2)請說明本次調(diào)查數(shù)據(jù)的中位數(shù)落在哪一組?
(3)在扇形統(tǒng)計圖中,D組所在扇形的圓心角為多少度?
(4)這個社區(qū)有2500戶家庭,請你估計年文化教育消費在10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與x軸、y軸分別交于A、B兩點,以AB為邊在第二象限內(nèi)作正方形ABCD.
(1)求點A、B的坐標,并求邊AB的長;
(2)求點C和點D的坐標;
(3)在x軸上找一點M,使△MDB的周長最小,請求出M點的坐標,并直接寫出△MDB的周長最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.
(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com