【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第二象限內(nèi)作正方形ABCD.
(1)求點(diǎn)A、B的坐標(biāo),并求邊AB的長;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)在x軸上找一點(diǎn)M,使△MDB的周長最小,請(qǐng)求出M點(diǎn)的坐標(biāo),并直接寫出△MDB的周長最小值.
【答案】(1)A(﹣4,0),B(0,2);AB=2;(2)D(﹣6,4),C(﹣2,6);(3)M坐標(biāo)為(﹣2,0),△MDB的周長為2+6.
【解析】
(1)對(duì)于直線解析式,分別令x=0與y=0求出對(duì)應(yīng)y與x的值,確定出A與B的坐標(biāo),得到OA與OB的長,利用勾股定理求出AB的長即可;
(2)過D作DE垂直于x軸,過C作CF垂直于y軸,根據(jù)四邊形ABCD的正方形,得到四條邊相等,四個(gè)角為直角,利用同角的余角相等得到三個(gè)角相等,利用AAS得到△EDA,△AOB以及△BFC全等,利用全等三角形的對(duì)應(yīng)邊相等得到DE=OA=BF=4,AE=OB=CF=2,進(jìn)而求出OE與OF的長,即可確定出D與C的坐標(biāo);
(3)找出B關(guān)于y軸的對(duì)稱點(diǎn)B′,連接DB′,交x軸于點(diǎn)M,此時(shí)BM+MD=DM+MB′=DB′最小,即△BDM周長最小,設(shè)直線DB′解析式為y=kx+b,把D與B′坐標(biāo)代入求出k與b的值,確定出直線DB′解析式,令y=0求出x的值,確定出此時(shí)M的坐標(biāo)即可.
解:(1)對(duì)于直線y=x+2,
令x=0,得到y=2;令y=0,得到x=﹣4,
∴A(﹣4,0),B(0,2),即OA=4,OB=2,
則AB==2;
(2)過D作DE⊥x軸,過C作CF⊥y軸,
∵四邊形ABCD為正方形,
∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,
∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,
∴∠FBC=∠OAB=∠EDA,
∴△DEA≌△AOB≌△BFC(AAS),
∴AE=OB=CF=2,DE=OA=FB=4,
即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,
則D(﹣6,4),C(﹣2,6);
(3)如圖所示,連接BD,找出B關(guān)于y軸的對(duì)稱點(diǎn)B′,連接DB′,交x軸于點(diǎn)M,此時(shí)BM+MD=DM+MB′=DB′最小,即△BDM周長最小,
∵B(0,2),
∴B′(0,﹣2),
設(shè)直線DB′解析式為y=kx+b,
把D(﹣6,4),B′(0,﹣2)代入得:,
解得:k=﹣1,b=﹣2,
∴直線DB′解析式為y=﹣x﹣2,
令y=0,得到x=﹣2,
則M坐標(biāo)為(﹣2,0),
此時(shí)△MDB的周長為2+6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計(jì) | 100% |
(1)填空:a=____,b=____;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號(hào)發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號(hào)發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點(diǎn),過點(diǎn)A(﹣1,0)的拋物線y=x2﹣bx﹣3與x軸的另一個(gè)交點(diǎn)為B,與y軸交于點(diǎn)C,其頂點(diǎn)為D點(diǎn).
(1)求b的值以及點(diǎn)D的坐標(biāo);
(2)求△BCD的面積;
(3)連接BC、BD、CD,在x軸上是否存在點(diǎn)P,使得以A、C、P為頂點(diǎn)的三角形與△BCD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
(4)在拋物線上是否存在點(diǎn)Q,使得以A、C、Q為頂點(diǎn)且以AC為直角邊的三角形為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時(shí),這個(gè)方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖冢(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對(duì)稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com