【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.

1)在一次數(shù)學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DEAF于點M,觀察發(fā)現(xiàn):點MDE的中點.

下面是兩位學生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接BDAF于點H.…

請參考上面的思路,證明點MDE的中點(只需用一種方法證明);

2)如圖2,在(1)的前提下,當∠ABE=135°時,延長ADEF交于點N,求的值;

3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

【答案】1)證明見解析;(2;(3

【解析】試題分析:1)證法一,利用菱形性質(zhì)得AB=CDABCD,利用平行四邊形的性質(zhì)得AB=EFABEF,則CD=EF,CDEF,再根據(jù)平行線的性質(zhì)得CDM=∠FEM,則可根據(jù)“AAS”判斷CDM≌△FEM,所以DM=EM;

證法二,利用菱形性質(zhì)得DH=BH,利用平行四邊形的性質(zhì)得AFBE,再根據(jù)平行線分線段成比例定理得到=1,所以DM=EM;

2)由CDM≌△FEM得到CM=FM,設(shè)AD=a,CM=b,則FM=b,EF=AB=a,再證明四邊形ABCD為正方形得到AC=a,接著證明ANF為等腰直角三角形得到NF=a+b,則NE=NF+EF=2a+b,然后計算的值;

3)由于= ==k,則 =,然后表示出 ==,再把 =代入計算即可.

試題解析:解:(1)如圖1,證法一四邊形ABCD為菱形,AB=CD,ABCD四邊形ABEF為平行四邊形,AB=EF,ABEFCD=EF,CDEF,∴∠CDM=∠FEM,在CDMFEM,∵∠CMD=∠FME,CDM=∠FEM,CD=EF,∴△CDM≌△FEM,DM=EM,即點MDE的中點;

證法二:四邊形ABCD為菱形,DH=BH,四邊形ABEF為平行四邊形,AFBE,HMBE =1,DM=EM,即點MDE的中點;

2∵△CDM≌△FEMCM=FM,設(shè)AD=a,CM=b,∵∠ABE=135°∴∠BAF=45°,四邊形ABCD為菱形,∴∠NAF=45°四邊形ABCD為正方形,AC=AD=a,ABEF,∴∠AFN=BAF=45°,∴△ANF為等腰直角三角形,NF=AF=a+b+b=a+bNE=NF+EF=a+b+a=2a+b, = =

3= ==k,=, = == ==

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應(yīng)區(qū)美麗廣西 清潔鄉(xiāng)村的號召,某校開展美麗廣西 清潔校園的活動,該校經(jīng)過精心設(shè)計,計算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項綠化工作,將每天的工作量提高為原來的1.2倍.結(jié)果一共用20天完成了該項綠化工作.該項綠化工作原計劃每天完成多少m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度;

(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物是否需要挪走,并說明理由.

【答案】(1)5.6m;(2)應(yīng)挪走.

【解析】試題解析:試題分析:(1)在構(gòu)建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在RtACD中,求出AC的長.
(2)通過解直角三角形,可求出BD、CD的長,進而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.

試題解析:(1)如圖,
RtABD中,AD=ABsin45°=4
RtACD中,
∵∠ACD=30°
AC=2AD=8.
即新傳送帶AC的長度約為8米;
(2)結(jié)論:貨物MNQP不用挪走.
解:在RtABD中,BD=ABcos45°=4=4.
RtACD中,CD=AD=4
CB=CD-BD=4-4≈2.8.
PC=PB-CB5-2.8=2.2>2,
貨物MNQP不應(yīng)挪走.

型】解答
結(jié)束】
8

【題目】如圖有一圓錐形糧堆,其主視圖是邊長為6m的正三形ABC。

(1)求該圓錐形糧堆的側(cè)面積。

(2)母線AC的中點P處有一老鼠正在偷吃糧食,小貓從B處沿圓錐表面去偷襲老鼠,求小貓經(jīng)過的最短路程。 (結(jié)果不取近似數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為相異數(shù).將一個相異數(shù)任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123) =6

1)計算:F(315)F(746);

2)若st都是相異數(shù),其中s=100x+42,t=160+y1≤x≤91≤y≤9,x、y都是正整數(shù)),當F(s)+F(t)=17時,求x、y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元.已知綠茶每千克成本50元,經(jīng)研究發(fā)現(xiàn)銷量ykg)隨銷售單價x(元/ kg)的變化而變化,具體變化規(guī)律如下表所示:

設(shè)該綠茶的月銷售利潤為w(元)(銷售利潤=單價×銷售量-成本)

1)請根據(jù)上表,求出yx之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);

2)求wx之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍),并求出x為何值時,w的值最大?

3)若在第一個月里,按使w獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于80元,要想在全部收回裝修投資的基礎(chǔ)上使第二個月的利潤至少達到1700元,那么第二個月時里應(yīng)該確定銷售單價在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,第1個正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CBx軸于點A1,作第2個正方形A1B1C1C;延長C1B1x軸于點A2,作第3個正方形A2B2C2C1…按這樣的規(guī)律進行下去,第2個正方形的面積為_____;第2011個正方形的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABBC,DAC中點,過點DDEBC,交AB于點E

1)求證:AEDE;

2)若∠C65°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC為等邊三角形

1)若D為△ABC外一點,滿足∠CDB=30,求證:

2)若D為△ABC內(nèi)一點,DC=3,DB=4,DA=5,求∠CDB的度數(shù)

3)若D為△ABC內(nèi)一點,DA=4,DB=,DC=AB= (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點E F ,連結(jié)BD 、DP ,BDCF相交于點H. 給出下列結(jié)論:BDE DPE; ;DP 2=PH ·PB; . 其中正確的是( .

A. ①②③④ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

同步練習冊答案