【題目】如圖,已知△ABC中,AB=BC,D為AC中點,過點D作DE∥BC,交AB于點E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數.
【答案】(1)證明見解析;(2)25°.
【解析】
(1)由等腰三角形的性質可得∠C=∠A,由平行線的性質可得∠C=∠ADE,從而∠A=∠ADE;
(2)先由三角形內角和求出∠ABC=50°,再由三線合一的性質可求出∠EBD=∠DBC=∠ABC=25°,然后根據平行線的性質求解即可.
證明:(1)∵DE∥BC,
∴∠C=∠ADE,
∵AB=BC,
∴∠C=∠A,
∴∠A=∠ADE,
∴AE=DE;
(2)∵△ABC中,AB=BC,∠C=65°,
∴∠ABC=180°﹣65°﹣65°=50°,
∵AB=BC,D為AC中點,
∴∠EBD=∠DBC=∠ABC=25°,
∵DE∥BC,
∴∠BDE=∠DBC=25°.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D是∠ACB與∠ABC的角平分線的交點,BD的延長線交AC于點E.
(1)若∠A=80°,求∠BDC的度數;
(2)若∠EDC=40°,求∠A的度數;
(3)請直接寫出∠A與∠BDC之間的數量關系(不必說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經過點C,連接DE交AF于點M,觀察發(fā)現:點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數),直接用含k的代數式表示的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,教學樓在建筑物的墻上留下高2米的影子CE;而當光線與地面夾角是45°時,教學樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上)
(1)求教學樓AB的高度;
(2)學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結果保留整數).
(參考數據:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在長方形ABCD中,將△ABE沿著AE折疊至△AEF的位置,點F在對角線AC上,若BE=3,EC=5,則線段CD的長是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=,把紙片按如圖所示折疊,使點B落在AD邊上的B′點,AE是折痕.
(1)試判斷B′E與DC的位置關系;并說明理由.
(2)如果∠C=,求∠AEB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】巴蜀中學2017春季運動會的開幕式精彩紛呈,主要分為以下幾個類型:A文藝范、B動漫潮、C學院派、D民族風,為了解未能參加運動會的初三學子對開幕式類型的喜好情況,學生處在初三年級隨機抽取了一部分學生進行調查,并將他們喜歡的種類繪制成如下統(tǒng)計圖,請你根據統(tǒng)計圖解答以下問題:
(1)請補全折線統(tǒng)計圖,并求出“動漫潮”所在扇形的圓心角度數.
(2)據統(tǒng)計,在被調查的學生中,喜歡“文藝范”類型的僅有2名住讀生,其余均為走讀生,初二年級欲從喜歡“文藝范”的這幾名同學中隨機抽取兩名同學去觀摩“文明禮儀大賽”視頻,用列表法或樹狀圖的方法求出所選的兩名同學都是走讀生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com