【題目】如圖,△ABC中,∠C=90°,BC=6 cm,AC=8 cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.
(1)經(jīng)過幾秒,△CPQ的面積等于3cm2?
(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
【答案】(1)x1=1,x2=3.(2)不存在;理由見解析
【解析】
試題分析:(1)設(shè)經(jīng)過x秒,用x表示出CP,CQ的長,根據(jù)△CPQ的面積等于3cm2列一元二次方程,然后解方程即可;(2)設(shè)存在某一時刻t,使PQ恰好平分△ABC的面積,根據(jù)題意可列方程t(8-2t)=××6×8,解方程后可判斷.
試題解析:(1)設(shè)經(jīng)過x秒,△CPQ的面積等于3cm2.則x(8-2x)=3, 化簡得x2-4x+3=0,
解得x1=1,x2=3.
(2)設(shè)存在某一時刻t,使PQ恰好平分△ABC的面積.則t(8-2t)=××6×8,
化簡得t 2-4t+12=0, b2-4ac=16-48=-32<0,方程無實數(shù)根,即不存在滿足條件的t.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊長18米,寬15米的矩形荒地修建成一個花園(陰影部分)所占的面積為原來荒地面積的三分之二.(精確到0.1m)
(1)設(shè)計方案1(如圖1)花園中修兩條互相垂直且寬度相等的小路.
(2)設(shè)計方案2(如圖2)花園中每個角的扇形都相同.
以上兩種方案是否都能符合條件?若能,請計算出圖1中的小路的寬和圖2中扇形的半徑;若不能符合條件,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(2,3),B(6,3),連結(jié)AB,如果點P在直線y=x-1上 ,且點P到直線AB的距離小于1,那么稱點P是線段AB的“鄰近點”.
(1)判斷點C(,)是否是線段AB的“鄰近點” ;
(2)若點Q(m,n)是線段AB的“鄰近點”,則m的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)求一次函數(shù)y=2x-2的圖象l1與y=x-1的圖象l2的交點P的坐標(biāo).
(2)求直線與軸交點A的坐標(biāo); 求直線與x軸的交點B的坐標(biāo);
(3)求由三點P、A、B圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣2(x﹣1)2+3的圖象的頂點坐標(biāo)是( )
A.(1,3)
B.(﹣1,3)
C.(1,﹣3)
D.(﹣1,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進(jìn)行抽查調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(1)被抽查的學(xué)生數(shù)是 ,并補(bǔ)全圖中的頻數(shù)分布直方圖;
(2)扇形統(tǒng)計圖中,戶外活動時間為2小時部分對應(yīng)的圓心角的度數(shù)為 .
(3)戶外活動時間的中位數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com