【題目】如圖,在平面直角坐標(biāo)系中,已知點A(2,3),B(6,3),連結(jié)AB,如果點P在直線y=x-1上 ,且點P到直線AB的距離小于1,那么稱點P是線段AB的“鄰近點”.
(1)判斷點C(,)是否是線段AB的“鄰近點” ;
(2)若點Q(m,n)是線段AB的“鄰近點”,則m的取值范圍 .
【答案】(1)是;(2)3<m<5.
【解析】
試題分析:(1)點C(,)是線段AB的“臨近點”.理由是:∵點P到直線AB的距離小于1,A、B的縱坐標(biāo)都是3,∴AB∥x軸,3-1=2,3+1=4,∴當(dāng)縱坐標(biāo)y在2<y<4范圍內(nèi)時,點是線段AB的“臨近點”,點C的坐標(biāo)是(,),∴y=>2,且小于4,∵C(,)在直線y=x-1上,∴點C(,)是線段AB的“臨近點”.
(2)∵點Q(m,n)是線段AB的“臨近點”,由(1)可以得,線段AB的“臨近點”的縱坐標(biāo)的范圍是2<n<4,把n=2代入n=m-1得m=3, n=4代入n=m-1得m=5,∴3<m<5,即m的取值范圍是3<m<5.故答案為:(1)是;(2)3<m<5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件夾克衫先按成本價提高50%標(biāo)價,再將標(biāo)價打8折出售,結(jié)果獲利28元,如果設(shè)這件夾克衫的成本價是x元,那么根據(jù)題意,所列方程正確的是( )
A.0.8(1+0.5)x=x+28
B.0.8(1+0.5)x=x﹣28
C.0.8(1+0.5x)=x﹣28
D.0.8(1+0.5x)=x+28
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了研究,下面是小慧的研究過程,請補充完成:
(1)函數(shù)的自變量的取值范圍是__________;
(2)列表,找出與的幾組對應(yīng)值.
其中, __________;
(3)在平面直角坐標(biāo)系中,描出以上表中各隊對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;
(4)寫出該函數(shù)的一條性質(zhì):____________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx(k≠0)經(jīng)過第二、四象限,點(k﹣1,3k+5)是其圖象上的點,則k的值為( 。
A.3B.5C.﹣1D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6 cm,AC=8 cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達終點時,另一點也隨之停止運動.
(1)經(jīng)過幾秒,△CPQ的面積等于3cm2?
(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC邊上相遇?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com