【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

【答案】
(1)證明:連接OD,

∵∠ACD=60°,

∴由圓周角定理得:∠AOD=2∠ACD=120°,

∴∠DOP=180°﹣120°=60°,

∵∠APD=30°,

∴∠ODP=180°﹣30°﹣60°=90°,

∴OD⊥DP,

∵OD為半徑,

∴DP是⊙O切線


(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,

∴OP=6cm,由勾股定理得:DP=3 cm,

∴圖中陰影部分的面積S=SODP﹣S扇形DOB= ×3×3 =( π)cm2


【解析】(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可;(2)求出OP、DP長,分別求出扇形DOB和三角形ODP面積,即可求出答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y= (x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣ >0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫出△ABC關(guān)于y軸對稱的△A1B1C1
②將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,點A、B的坐標分別為(3,0)、(2,﹣3),△AB′O′是△ABO關(guān)于點A的位似圖形,且O′的坐標為(﹣1,0),則點B′的坐標為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓的直徑,點D是 的中點,∠ABC=50°,則∠DAB等于(
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)500名員工參加安全生產(chǎn)知識測試,成績記為A,B,C,D,E共5個等級,為了解本次測試的成績(等級)情況,現(xiàn)從中隨機抽取部分員工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次抽樣調(diào)查的樣本容量,并補全圖①;
(2)如果測試成績(等級)為A,B,C級的定位優(yōu)秀,請估計該企業(yè)參加本次安全生產(chǎn)知識測試成績(等級)達到優(yōu)秀的員工的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點P,若PA= cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(3,1)、(3,3),雙曲線y= (k≠0,x>0)過點D.

(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點E,連結(jié)DE,求△ CDE的面積.

查看答案和解析>>

同步練習冊答案