【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點(diǎn)和點(diǎn),函數(shù)圖象最低點(diǎn)的縱坐標(biāo)為.直線的解析式為
求二次函數(shù)的解析式;
直線沿軸向右平移,得直線,與線段相交于點(diǎn),與軸下方的拋物線相交于點(diǎn),過點(diǎn)作軸于點(diǎn),把沿直線折疊,當(dāng)點(diǎn)恰好落在拋物線上點(diǎn)時(shí)(圖求直線的解析式;
在的條件下,與軸交于點(diǎn),把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,P為上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),求符合條件的點(diǎn)的坐標(biāo).
【答案】(1);(2);(3)滿足條件的點(diǎn)坐標(biāo)為或或
【解析】
(1)先得出拋物線的頂點(diǎn)坐標(biāo),從而設(shè)出拋物線的頂點(diǎn)式,再將代入求解即可;
(2)設(shè)直線的解析式為,從而可得點(diǎn)B、的坐標(biāo),再根據(jù)翻轉(zhuǎn)的性質(zhì)可得四邊形是矩形,然后根據(jù)對(duì)稱性得出點(diǎn)E、C的坐標(biāo),最后根據(jù)點(diǎn)C、的縱坐標(biāo)相等列出等式求解即可;
(3)先根據(jù)直線的解析式得出點(diǎn)B、N的坐標(biāo),再根據(jù)旋轉(zhuǎn)的性質(zhì)得出點(diǎn)、的坐標(biāo),然后根據(jù)等腰三角形的定義,分三種情況,分別根據(jù)兩點(diǎn)之間的距離公式求解即可.
(1)由題意得:拋物線的頂點(diǎn)坐標(biāo)為,即
由此可設(shè)拋物線的解析式為
把代入得,解得
則拋物線的解析式為,即;
(2)設(shè)直線沿軸向右平移m個(gè)單位長(zhǎng)度,則直線的解析式為,點(diǎn)B的坐標(biāo)為
由題意得:,四邊形是矩形
點(diǎn)C與點(diǎn)均在拋物線上
點(diǎn)C與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱
點(diǎn)E與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱
點(diǎn)B的坐標(biāo)為
點(diǎn)E的坐標(biāo)為,點(diǎn)的坐標(biāo)為
點(diǎn)C的坐標(biāo)為
則
解得或(不符題意,舍去)
故直線的解析式為;
(3)由(2)可知,直線的解析式為,點(diǎn)B的坐標(biāo)為
令得,則點(diǎn)N的坐標(biāo)為
是等腰直角三角形
把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到
則點(diǎn)在直線上,點(diǎn)在直線上,且,
點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為
設(shè)
則
由等腰三角形的定義,分以下三種情況:
①當(dāng)時(shí),即
則
解得
此時(shí)點(diǎn)P的坐標(biāo)為
②當(dāng)時(shí),即
則
解得
此時(shí)點(diǎn)P的坐標(biāo)為或
③當(dāng)時(shí),即
則
整理得,此方程的根的判別式,則此方程沒有實(shí)數(shù)根
即此時(shí)沒有滿足條件的點(diǎn)P
綜上,滿足條件的點(diǎn)坐標(biāo)為或或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行團(tuán)32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團(tuán)中成人與少年分別是多少人?
(2)因時(shí)間充裕,該團(tuán)準(zhǔn)備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價(jià)格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費(fèi)攜帶一名兒童.
①若由成人8人和少年5人帶隊(duì),則所需門票的總費(fèi)用是多少元?
②若剩余經(jīng)費(fèi)只有1200元可用于購(gòu)票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊(duì)?求所有滿足條件的方案,并指出哪種方案購(gòu)票費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C = 90°, P是CB邊上一動(dòng)點(diǎn),連接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,設(shè)PC的長(zhǎng)度為xcm,BQ的長(zhǎng)度為ycm .
小青同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小青同學(xué)的探究過程,請(qǐng)補(bǔ)充完整:
(1) 按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y的幾組對(duì)應(yīng)值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補(bǔ)全表格時(shí),相關(guān)數(shù)據(jù)保留一位小數(shù))
m的值約為多少cm;
(2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x ,y),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)y > 2時(shí),寫出對(duì)應(yīng)的x的取值范圍;
②若點(diǎn)P不與B,C兩點(diǎn)重合,是否存在點(diǎn)P,使得BQ=BP?(直接寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植類蔬菜面積(單位:畝) | 種植類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | |||
乙 |
說明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位
求兩類蔬菜每畝的平均收入各是多少元?
某種植戶準(zhǔn)備租畝地用來種植兩類蔬菜,為了使總收入不低于元且種植類蔬菜的面積多于種植類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案;
在的基礎(chǔ)上,指出哪種方案使總收入最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新函數(shù)(如圖所示),請(qǐng)你在圖中畫出這個(gè)新圖象,當(dāng)直線y=﹣x+m與新圖象有4個(gè)交點(diǎn)時(shí),m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京世界園藝博覽會(huì)(以下簡(jiǎn)稱“世園會(huì)”)于2019年4月29日至10月7日在北京市延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的游玩路線,如下表:
A | B | C | D |
漫步世園會(huì) | 愛家鄉(xiāng),愛園藝 | 清新園藝之旅 | 車覽之旅 |
小美和小紅都計(jì)劃去世園會(huì)游玩,她們各自在這4條路線中任意選擇一條,每條線路被選擇的可能性相同.
(1)求小美選擇路線“清新園藝之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求小美和小紅恰好選擇同一條路線的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系上的點(diǎn)和,定義如下:若上存在兩個(gè)點(diǎn),使得點(diǎn)在射線上,且,則稱為的依附點(diǎn).
(1)當(dāng)的半徑為1時(shí)
①已知點(diǎn),,,在點(diǎn)中,的依附點(diǎn)是______;
②點(diǎn)在直線上,若為的依附點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(2)的圓心在軸上,半徑為1,直線與軸、軸分別交于點(diǎn),若線段上的所有點(diǎn)都是的依附點(diǎn),請(qǐng)求出圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“最美女教師”張麗莉,為搶救兩名學(xué)生,以致雙腿高位截肢,社會(huì)各界紛紛為她捐款,我市某中學(xué)九年級(jí)一班全體同學(xué)參加了捐款活動(dòng),該班同學(xué)捐款情況的部分統(tǒng)計(jì)圖如圖所示:
(1)求該班的總?cè)藬?shù);
(2)將條形圖補(bǔ)充完整,并寫出捐款總額的眾數(shù);
(3)該班平均每人捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,AB⊥CD,垂足為G,OG:OC=3:5,AB=8.點(diǎn)E為圓上一點(diǎn),∠ECD=15°,將 沿弦CE翻折,交CD于點(diǎn)F,圖中陰影部分的面積=_________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com