【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,AB⊥CD,垂足為G,OG:OC=3:5,AB=8.點E為圓上一點,∠ECD=15°,將 沿弦CE翻折,交CD于點F,圖中陰影部分的面積=_________
【答案】
【解析】
連接AO,將陰影部分沿CE翻折,點F的對應(yīng)點為M,連接OM,過點M作MN⊥CD于點N,根據(jù)題意可以利用勾股定理求得⊙O的半徑;得出S陰影=S弓形CBM,然后利用銳角三角函數(shù)、扇形的面積和三角形的面積即可解答本題.
解:連接AO,將陰影部分沿CE翻折,點F的對應(yīng)點為M,如圖所示,
∵CD為⊙O的直徑,AB⊥CD,AB=8,
∴AG=AB=4,
∵OG:OC=3:5,AB⊥CD,垂足為G,
∴設(shè)⊙O的半徑為5k,則OG=3k,
∴(3k)2+42=(5k)2,
解得,k=1或k=1(舍去),
∴5k=5,
∴⊙O的半徑是5;
將陰影部分沿CE翻折,點F的對應(yīng)點為M,
∵∠ECD=15°,由對稱性可知,∠DCM=30°,S陰影=S弓形CBM,
連接OM,則∠MOD=60°,
∴∠MOC=120°,
過點M作MN⊥CD于點N,
∴MN=MOsin60°=5×=,
∴S陰影=S扇形OMCS△OMC==,
即圖中陰影部分的面積是:.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點和點,函數(shù)圖象最低點的縱坐標(biāo)為.直線的解析式為
求二次函數(shù)的解析式;
直線沿軸向右平移,得直線,與線段相交于點,與軸下方的拋物線相交于點,過點作軸于點,把沿直線折疊,當(dāng)點恰好落在拋物線上點時(圖求直線的解析式;
在的條件下,與軸交于點,把繞點逆時針旋轉(zhuǎn)得到,P為上的動點,當(dāng)為等腰三角形時,求符合條件的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學(xué)生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點為圓心,以為半徑作優(yōu)弧,交于點,交于點.點在優(yōu)弧上從點開始移動,到達(dá)點時停止,連接.
(1)當(dāng)時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時,求點在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點A(m,m+3)和CD上的點E,且OB-CE=1。直線l過O、E兩點,則tan∠EOC的值為( )
A. B. 5 C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當(dāng)點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標(biāo);
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與函數(shù)的圖象交于、兩點,連接并延長交函數(shù)的圖象于點,連接,若的面積為12,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=k(x﹣1)2+2的圖象與一次函數(shù)y=kx﹣k+2的圖象交于A、B兩點,點B在點A的右側(cè),直線AB分別與x、y軸交于C、D兩點,其中k<0.
(1)求A、B兩點的橫坐標(biāo);
(2)若△OAB是以OA為腰的等腰三角形,求k的值;
(3)二次函數(shù)圖象的對稱軸與x軸交于點E,是否存在實數(shù)k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com