【題目】在△ABC中,AB=AC,∠BAC=(),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。
(1)如圖1,直接寫出∠ABD的大小(用含的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結(jié)DE,若∠DEC=45°,求的值。
【答案】(1)(2)見解析(3)
【解析】解:(1)。
(2)△ABE為等邊三角形。證明如下:
連接AD,CD,ED,
∵線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到線段BD,
∴BC=BD,∠DBC=60°。
又∵∠ABE=60°,
∴且△BCD為等邊三角形。
在△ABD與△ACD中,∵AB=AC,AD=AD,BD=CD,
∴△ABD≌△ACD(SSS)。∴。
∵∠BCE=150°,∴。∴。
在△ABD和△EBC中,∵,,BC=BD,
∴△ABD≌△EBC(AAS)。∴AB=BE。
∴△ABE為等邊三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴。
又∵∠DEC=45°,∴△DCE為等腰直角三角形。
∴DC=CE=BC。
∵∠BCE=150°,∴。
而。∴。
(1)∵AB=AC,∠BAC=,∴。
∵將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD,∴。
∴。
(2)由SSS證明△ABD≌△ACD,由AAS證明△ABD≌△EBC,即可根據(jù)有一個(gè)角等于的等腰三角
形是等邊三角形的判定得出結(jié)論。
(3)通過證明△DCE為等腰直角三角形得出,由(1),從
而,解之即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是四邊形的對(duì)角線上一點(diǎn),且.從圖中找出對(duì)相似三角形,它們是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°.
(1)求證:∠CAD+∠CBD=90°;
(2)如圖2,過點(diǎn)B作BE⊥BD,BE=BD,連接EC,若ACBD=ADBC,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在等邊△ABC的邊BC上,BE=6,射線CD⊥BC于點(diǎn)C,點(diǎn)P是射線CD上一動(dòng)點(diǎn),點(diǎn)F是線段AB上一動(dòng)點(diǎn),當(dāng)EP+PF的值最小時(shí),BF=9,則AC為( )
A.14B.13C.12D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張康和李健兩名運(yùn)動(dòng)愛好者周末相約到丹江環(huán)庫綠道進(jìn)行跑步鍛煉.
(1)周日早上點(diǎn),張康和李健同時(shí)從家出發(fā),分別騎自行車和步行到離家距離分別為千米和千米的綠道環(huán)庫路入口匯合,結(jié)果同時(shí)到達(dá),且張康每分鐘比李健每分鐘多行米,求張康和李健的速度分別是多少米分?
(2)兩人到達(dá)綠道后約定先跑千米再休息,李健的跑步速度是張康跑步速度的倍,兩人在同起點(diǎn),同時(shí)出發(fā),結(jié)果李健先到目的地分鐘.
①當(dāng),時(shí),求李健跑了多少分鐘?
②求張康的跑步速度多少米分?(直接用含,的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn) 50 臺(tái)機(jī)器,現(xiàn)在生產(chǎn) 600 臺(tái)機(jī)器所需時(shí)間與原計(jì)劃生產(chǎn) 450 臺(tái)機(jī)器所需時(shí)間相同.
(1)現(xiàn)在平均每天生產(chǎn)多少臺(tái)機(jī)器;
(2)生產(chǎn) 3000 臺(tái)機(jī)器,現(xiàn)在比原計(jì)劃提前幾天完成.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=﹣x﹣1與x軸,y軸的交點(diǎn)分別為A、B,以x=﹣1為對(duì)稱軸的拋物線y=x2+bx+c與x軸分別交于點(diǎn)A、C,直線x=﹣1與x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)在線段AB上是否存在一點(diǎn)P,使以A,D,P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4),
(1)將△ABC各頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別減5后得到△A1B1C1;
①請(qǐng)?jiān)趫D中畫出△A1B1C1;
②求這個(gè)變換過程中線段AC所掃過的區(qū)域面積;
(2)將△ABC繞點(diǎn)(1,0)按逆時(shí)針方向旋轉(zhuǎn)90°后得到的△A2B2C2,請(qǐng)?jiān)趫D中畫出△A2B2C2,并分別寫出△A2B2C2的頂點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com