【題目】在平面直角坐標(biāo)系xOy中,直線l:y=kx+b與雙曲線交于點(diǎn)A(1,n)和點(diǎn)B(-2,-1),點(diǎn)C是x軸的一個動點(diǎn).
(1)①求m的值和點(diǎn)A的坐標(biāo);
②求直線l的表達(dá)式;
(2)若△ABC的面積等于6,直接寫出點(diǎn)C的坐標(biāo).
【答案】(1)①m=2,點(diǎn)A坐標(biāo)為(1,2);②y=x+1;(2)點(diǎn)C坐標(biāo)為(3,0)或(-5,0)
【解析】
(1)①把B點(diǎn)代入中求出m得到反比例函數(shù)解析式為,然后利用反比例函數(shù)解析式確定A點(diǎn)坐標(biāo);
②利用待定系數(shù)法求直線l的解析式;
(2)直線AB交x軸于D,如圖,則D(-1,0),設(shè)C(t,0),利用三角形面積公式得到×|t+1|×2+×|t+1|×1=6,然后解方程求出t得到C點(diǎn)坐標(biāo).
(1)①∵點(diǎn)B(-2,-1)在雙曲線上
∴m=2
∵點(diǎn)A(1,n)在雙曲線上
∴n=2,點(diǎn)A坐標(biāo)為(1,2)
②∵點(diǎn)A(1,2)和點(diǎn)B(-2,-1)在直線l:y=kx+b上
∴
解得:
∴直線l的表達(dá)式為:y=x+1
(2)直線AB交x軸于D,如圖,則D(-1,0),
設(shè)C(t,0),
∵S△ABC=S△ACD+S△BCD,
∴×|t+1|×2+×|t+1|×1=6,解得t=3或t=-5,
∴C點(diǎn)坐標(biāo)為(3,0)或(-5,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),與軸交于點(diǎn),(點(diǎn)在點(diǎn)左側(cè)).直線與拋物線的對稱軸交于點(diǎn).
(1)求拋物線的對稱軸;
(2)直接寫出點(diǎn)的坐標(biāo);
(3)點(diǎn)與點(diǎn)關(guān)于拋物線的對稱軸對稱,過點(diǎn)作軸的垂線與直線交于點(diǎn),若,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與,軸分別交于點(diǎn),,與反比例函數(shù)圖象交于點(diǎn),,過點(diǎn)作軸的垂線交該反比例函數(shù)圖象于點(diǎn).
求點(diǎn)的坐標(biāo).
若.
①求的值.
②試判斷點(diǎn)與點(diǎn)是否關(guān)于原點(diǎn)成中心對稱?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)作軸的垂線段,分別交軸于A,B兩點(diǎn),交雙曲線于點(diǎn)E,F.
(1)點(diǎn)E的坐標(biāo)是______________;點(diǎn)F的坐標(biāo)是_________________________(均用含k的式子表示)
(2)判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相同,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)),問黃金、白銀每枚各種多少兩?設(shè)黃金重兩,每枚白銀重兩,根據(jù)題意可列方程組為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,給出如下定義:對于圖形G及圖形G外一點(diǎn)P,若圖形G上存在一點(diǎn)M,滿足PM=2,且使點(diǎn)P繞點(diǎn)M順時針旋轉(zhuǎn)90°后得到的對應(yīng)點(diǎn)P’在這個圖形G上,則稱點(diǎn)P為圖形G的“2旋轉(zhuǎn)點(diǎn)”.
已知點(diǎn)A(-1,0),B(-1,2),C(2,-2),D(0,3),E(2,2),F(3,0)
(1)①判斷:點(diǎn)B________線段AF的“2旋轉(zhuǎn)點(diǎn)”(填“是”或“不是”);
②點(diǎn)C,D,E中,是線段AF的“2旋轉(zhuǎn)點(diǎn)”的有_________;
(2)已知直線,若直線l上存在線段AF的“2旋轉(zhuǎn)點(diǎn)”,求b的取值范圍;
(3)⊙T是以點(diǎn)T(t,0)為圓心,為半徑的一個圓,已知在線段AD上存在這個圓的“2旋轉(zhuǎn)點(diǎn)”, 直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的二次函數(shù),該函數(shù)的圖象經(jīng)過點(diǎn)A(0,5)、B(1,2)、C(3,2).
(1)求該二次函數(shù)的表達(dá)式,畫出它的大致圖象并標(biāo)注頂點(diǎn)及其坐標(biāo);
(2)結(jié)合圖象,回答下列問題:
①當(dāng)1≤x≤4時,y的取值范圍是 ;
②當(dāng)m≤x≤m+3時,求y的最大值(用含m的代數(shù)式表示);
③是否存在實(shí)數(shù)m、n(m≠n),使得當(dāng)m≤x≤n時,m≤y≤n?若存在,請求出m、n;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形中,動點(diǎn)從點(diǎn)出發(fā),沿折線運(yùn)動.設(shè)點(diǎn)經(jīng)過的路程為,的面積為.把看作的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時,仍有EF=BE+FD;請證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com