【題目】RtABC紙片中,∠ACB=90°,AC=6,BC=8,PAB邊上一點,連接CP.沿CPRtABC紙片裁開,要使ACP是等腰三角形,那么AP的長度是________

【答案】6,5

【解析】試題解析:①如圖:AP″=AC=6時,△ACP″是等腰三角形;

②CP=AP時,△ACP是等腰三角形;

PPE⊥AC,

∵CP=AP,

∴AE=AC=3,

∵∠ACB=90°,

∴PE∥CB,

∴PE=CB=4,

∴AP==5;

③CP′=AC時,△ACP′是等腰三角形,

CCF⊥AB,

∴AP′=2AF,

∵AC=6,

∴CP′=6,

∵∠ACB=90°,AC=6,BC=8,

∴AB=10,

∴cosA=,

,

∴AF=

∴AP′=,

故答案為:6,5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

我們已經(jīng)學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認為適當?shù)姆椒ń膺@個方程.

我選擇第 個方程。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形ABCD的頂點A在原點O處,點B在x軸上,點C的坐標為(6,6),點D在y軸上,動點P,Q各從點A,D同時出發(fā),分別沿AD,DC方向運動,且速度均為每秒1個單位長度.
(1)探索AQ與BP有什么樣的關系?并說明理由;
(2)如圖2,當點P運動到線段AD的中點處時,AQ與BP交于點E,求線段CE的長.
(3)如圖3,設運動t秒后,點P仍在線段AD上,AQ交BD于F,且△BPQ的面積為S,試求S的最小值,及當S取最小值時∠DPF的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C=90°,BAC=60°,ABC繞點C順時針旋轉,旋轉角為α(0°<α<180°),點A、B的對應點分別是點D、E.

(1)如圖1,當點D恰好落在邊AB上時,試判斷DEAC的位置關系,并說明理由.

(2)如圖2,當點B、D、E三點恰好在一直線上時,旋轉角α=__°,此時直線CEAB的位置關系是__

(3)在(2)的條件下,聯(lián)結AE,設BDC的面積S1AEC的面積S2,則S1S2的數(shù)量關系是_____

(4)如圖3,當點B、D、E三點不在一直線上時,(3)中的S1S2的數(shù)量關系仍然成立嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD中,AD=2AB,F(xiàn)BC的中點,作AE⊥CD,垂足E在線段CD上,連結EF、AF,下列結論:①2∠BAF=∠BAD;②EF=AF;③SABF≤SAEF;④∠BFE=3∠CEF.中一定成立的是(  )

A. ①②④ B. ①③ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,AOBC,DOOE.

(1)不添加其他條件情況下,請盡可能多地寫出圖中有關角的等量關系(至少3個);

(2)如果∠COE 350,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求解答下列各題

(1)已知a、b 互為相反數(shù),c、d 互為倒數(shù),x=(-2)2。

試求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值。

(2)已知有理數(shù)a、b、c 滿足|a-1|+|b-3|+|3c-1|=0,(a×b×c)178 ÷(a36×b7×c6)的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小劉上午從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小劉離家的路程y(米)和所經(jīng)過的時間x(分)之間的函數(shù)圖象如圖所示,則下列說法不正確的是( 。

A. 小劉家與超市相距3000 B. 小劉去超市途中的速度是300/

C. 小劉在超市逗留了30分鐘 D. 小劉從超市返回家比從家里去超市的速度快

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/分

頻數(shù)

頻率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m= , n=;
(2)請補全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在分數(shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

同步練習冊答案