【題目】解方程:

我們已經學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認為適當?shù)姆椒ń膺@個方程.

我選擇第 個方程。

【答案】

【解析】試題分析:①此方程利用公式法解比較方便;②此方程利用因式分解法解比較方便;③此方程利用公式法解比較方便;④此方程利用因式分解法解比較方便.

試題解析:

我選第①個方程,解法如下:

x2-4x-1=0,

這里a=1,b=-4,c=-1,

∵△=16+4=20,

∴x= =2±

x1=2+,x2=2-;

我選第②個方程,解法如下:

x(2x+1)=8x-3,

整理得:2x2-7x+3=0,

分解因式得:(2x-1)(x-3)=0,

可得2x-1=0x-3=0,

解得:x1=,x2=3;

我選第③個方程,解法如下:

x2+3x+1=0,

這里a=1,b=3,c=1,

∵△=9-4=5,

∴x= ,

x1=,x2=

我選第④個方程,解法如下:

x2-9=4(x-3),

變形得,(x+3)(x-3)-4(x-3)=0,

因式分解得,(x-3)(x+3-4)=0,

∴x-3=0x+3-4=0,

∴x1=3,x2=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD上一點P,作EFBC,HGAB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關系為( 。

AS1=S2 BS1>S2 CS1<S2 D不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全面兩孩政策實施后,甲,乙兩個家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問題

(1家庭已有一個男孩,準備生一個孩子,第二個孩子是女孩的率是 ;

(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點 A 表示的數(shù)為 6B 是數(shù)軸上在 A 左側的一點,且 AB 兩點間的距離為 10.動點 P 從點 A 出發(fā),以每秒 6 個單位長度的速度沿數(shù)軸 向左勻速運動,設運動時間為 tt0)秒.

1)數(shù)軸上點 B 表示的數(shù)是 ,點 P 表示的數(shù)是 (用含 t 的代數(shù) 式表示);

2動點 Q 從點 B 出發(fā),以每秒 4 個單位長度的速度沿數(shù)軸向左勻速運動, P、Q 時出發(fā).求:

①當點 P 運動多少秒時,點 P 與點 Q 相遇?

②當點 P 運動多少秒時,點 P 與點 Q 間的距離為 8 個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并填空在體育比賽中,我們常常會遇到計算比賽場次的問題,這時我們可以借助數(shù)線段的方法來計算.比如在一個小組中有 4 個隊,進行單循環(huán)比賽我們要計算總的比賽場次,我們就 設這四個隊分別為 A、B、C、D,并把它們標在同一條線段上,如下圖:

因為單循環(huán)比賽就是每兩個隊之間都要比賽一場,這就相當于,在上述圖形中四個點連接線段,按一定規(guī)律得到的線段有:

AB,AC,AD…………3

BC,BD………………2

CD……………………1

總的線段條數(shù)是 3+2+1=6

所以可知 4 個隊進行單循環(huán)比賽共比賽六場.

(1).類比上述想法若一個小組有 6 個隊,進行單循環(huán)比賽則總的比賽場次是_____

(2).類比上述想法,若一個小組有 n 個隊進行單循環(huán)比賽,則總的比賽場次是_____

(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 代表隊.第一階段每個小組進行單循環(huán)比賽.則第一階段共 _______ 場比賽.

(4).若分成 m 個小組每個小組有 n 個隊,第一階段每個小組進行單循環(huán)比賽.則第 一階段共需要進行_____________場比賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別延長□ABCD的邊CD,ABE,F,使DE=BF,連接EF,分別交AD,BCG,H,連結CG,AH.

求證:CG∥AH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx﹣3與x軸交于A、B兩點,與y軸交于點C,O是坐標原點,已知點B的坐標是(3,0),tan∠OAC=3;

(1)求該拋物線的函數(shù)表達式;
(2)點P在x軸上方的拋物線上,且∠PAB=∠CAB,求點P的坐標;
(3)若平行于x軸的直線與拋物線交于點M、N(M點在N點左側),
①若以MN為直徑的圓與x軸相切,求該圓的半徑;
②若Q(m,4)是直線MN上一動點,當以點C、B、Q為頂點的三角形的面積等于6時,請直接寫出符合條件的m值,為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD交于點O,給出下列四組條件:①ABCD,ADBC;ABCD,A=C;AO=CO,BO=DO;ABCD,AD=BC.

一定能判定四邊形ABCD是平行四邊形的條件有----------------------------( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC紙片中,∠ACB=90°,AC=6,BC=8,PAB邊上一點,連接CP.沿CPRtABC紙片裁開,要使ACP是等腰三角形,那么AP的長度是________

查看答案和解析>>

同步練習冊答案