若拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,最小值為-2,則關(guān)于x的方程ax2+bx+c=-2的根為   
【答案】分析:易得此方程的解就是當(dāng)函數(shù)值為頂點的縱坐標(biāo)時,相對應(yīng)的x的值.
解答:解:因為若拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,最小值為-2,所以此拋物線的頂點坐標(biāo)為(2,-2);關(guān)于x的方程ax2+bx+c=-2的根即y=-2時,x的取值,所以此時x=2.
點評:此題考查了二次函數(shù)的性質(zhì),考查了學(xué)生對函數(shù)圖象上點的理解,特別是頂點坐標(biāo)的求得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M精英家教網(wǎng).問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-
b
2a
4ac-b2
4a
)
,對稱軸公式為x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線y=ax2+bx+c的開口向上,且經(jīng)過原點,請寫出符合上述條件的一個解析式
y=x2
y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江模擬)已知拋物線y=ax2+bx經(jīng)過點A(-3,-3)和點P(t,0),且t≠0.
(1)如圖,若A點恰好是拋物線的頂點,請寫出它的對稱軸和t的值.
(2)若t=-4,求a、b的值,并指出此時拋物線的開口方向.
(3)若拋物線y=ax2+bx的開口向下,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平谷區(qū)一模)如圖,在直角坐標(biāo)系中,已知直線y=
1
2
x+1
與y軸交于點A,與x軸交于點B,以線段BC為邊向上作正方形ABCD.
(1)點C的坐標(biāo)為
(-3,2)
(-3,2)
,點D的坐標(biāo)為
(-1,3)
(-1,3)

(2)若拋物線y=ax2+bx+2(a≠0)經(jīng)過C、D兩點,求該拋物線的解析式;
(3)若正方形以每秒
5
個單位長度的速度沿射線BA向上平移,直至正方形的頂點C落在y軸上時,正方形停止運動.在運動過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線y=ax2+x+1(a≠0)的頂點始終在x軸的上方,則a的取值范圍
a>
1
4
或a<0
a>
1
4
或a<0

查看答案和解析>>

同步練習(xí)冊答案