【題目】如圖,正△ABC與等腰△ADE的頂點(diǎn)A重合,AD=AE,∠DAE=30°,將△ADE繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)BD=CE時(shí),∠BAD的大小可以是 .
【答案】15°或165°
【解析】解:由旋轉(zhuǎn)的性質(zhì)可知,等腰△ADE的形狀不變,位置在變.
①當(dāng)△ADE在△ABC內(nèi)時(shí),如圖1所示.
∵△ABC為等邊三角形,△ADE為等腰三角形,
∴AB=AC,∠BAC=60°,AD=AE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴∠BAD=∠CAE= =15°;
②當(dāng)△ADE在△ABC外時(shí),如圖2所示.
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴∠BAD=∠CAE= =165°.
總上可知:,∠BAD的大小可以是15°、165°.
所以答案是:15°或165°.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)經(jīng)營(yíng)的某品牌童裝,4月的銷(xiāo)售額為20000元,為擴(kuò)大銷(xiāo)量,5月份商場(chǎng)對(duì)這種童裝打9折銷(xiāo)售,結(jié)果銷(xiāo)量增加了50件,銷(xiāo)售額增加了7000元.
(1)求該童裝4月份的銷(xiāo)售單價(jià);
(2)若4月份銷(xiāo)售這種童裝獲利8000元,6月全月商場(chǎng)進(jìn)行“六一兒童節(jié)”促銷(xiāo)活動(dòng).童裝在4月售價(jià)的基礎(chǔ)上一律打8折銷(xiāo)售,若該童裝的成本不變,則銷(xiāo)量至少為多少件,才能保證6月的利潤(rùn)比4月的利潤(rùn)至少增長(zhǎng)25%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(3)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)是(﹣1,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,B,C三點(diǎn)的拋物線(xiàn)上.
(1)求拋物線(xiàn)的解析式;
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線(xiàn)AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn).垂足為F,連接EF,當(dāng)線(xiàn)段EF的長(zhǎng)度最短時(shí),寫(xiě)出點(diǎn)P的坐標(biāo)(不要求寫(xiě)解題過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人從A城出發(fā),前往距離A城30千米的B城.現(xiàn)在有三種方案供他選擇:
①騎自行車(chē),其速度為15千米/時(shí);
②蹬三輪車(chē),其速度為10千米/時(shí);
③騎摩托車(chē),其速度為40千米/時(shí).
(1)選擇哪種方式能使他從A城到達(dá)B城的時(shí)間不超過(guò)2小時(shí)?請(qǐng)說(shuō)明理由;
(2)設(shè)此人在行進(jìn)途中離B城的距離為s(千米),行進(jìn)時(shí)間為t(時(shí)),就(1)所選定的方案,試寫(xiě)出s與t之間的函數(shù)關(guān)系式(注明自變量t的取值范圍),并在如圖所示的平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求證:此一元二次方程恒有實(shí)數(shù)根.
(2)無(wú)論k為何值,該方程有一根為定值,請(qǐng)求出此方程的定值根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件25元時(shí),每天可賣(mài)出250件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,一件商品每漲價(jià)1元,每天要少賣(mài)出10件.
(1)求出每天所得的銷(xiāo)售利潤(rùn)w(元)與每件漲價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該商品每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部在調(diào)控價(jià)格方面,提出了A,B兩種營(yíng)銷(xiāo)方案.
方案A:每件商品漲價(jià)不超過(guò)5元;
方案B:每件商品的利潤(rùn)至少為16元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=x2+bx﹣5的圖象的對(duì)稱(chēng)軸是經(jīng)過(guò)點(diǎn)(2,0)且平行于y軸的直線(xiàn),則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點(diǎn),點(diǎn)F在邊AC的延長(zhǎng)線(xiàn)上,∠FEC=∠B,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com