【題目】已知關(guān)于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求證:此一元二次方程恒有實(shí)數(shù)根.
(2)無(wú)論k為何值,該方程有一根為定值,請(qǐng)求出此方程的定值根.

【答案】
(1)證明:∵△=b2﹣4ac=(﹣k)2﹣4×1×(k﹣1)=k2﹣4k+4=(k﹣2)2≥0,

∴此一元二次方程恒有實(shí)數(shù)根.


(2)解:解方程x2﹣kx+k﹣1=0,得

解得x1=k﹣1,x2=1.

其中根X=1與k的取值無(wú)關(guān),所以此方程的定值根為x=1.


【解析】(1)由根的判別式的符號(hào)來(lái)判定關(guān)于x的一元二次方程x2﹣kx+k﹣1=0的根的情況.(2)利用求根根式求得方程的兩個(gè)根,得到其中一根是常數(shù).
【考點(diǎn)精析】關(guān)于本題考查的求根公式,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在AC上,點(diǎn)E在BC的延長(zhǎng)線上,且BD=DE.

(1)若點(diǎn)D是AC的中點(diǎn),如圖1,求證:AD=CE.
(2)若點(diǎn)D不是AC的中點(diǎn),如圖2,試判斷AD與CE的數(shù)量關(guān)系,并證明你的結(jié)論:(提示:過(guò)點(diǎn)D作DF∥BC,交AB于點(diǎn)F.)
(3)若點(diǎn)D在線段AC的延長(zhǎng)線上,(2)中的結(jié)論是否仍成立?如果成立,給予證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以BC為直徑的圓交△ABC的兩邊AB、AC于點(diǎn)D、E,點(diǎn)E恰為AC的中點(diǎn),BF為△ABC的外角平分線,點(diǎn)F在圓上,請(qǐng)你僅用一把無(wú)刻度的直尺,過(guò)點(diǎn)A作一條線段,將△ABC分成面積相等的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司市場(chǎng)營(yíng)銷部的營(yíng)銷員的個(gè)人月收入y()與該營(yíng)銷員每月的銷售量x(萬(wàn)件)成一次函數(shù)關(guān)系,其圖象如圖11所示.根據(jù)圖象提供的信息,解答下列問(wèn)題:

(1)求出營(yíng)銷員的個(gè)人月收入y()與該營(yíng)銷員每月的銷售量x(萬(wàn)件)(x≥0)之間的函數(shù)關(guān)系式;

(2)已知該公司營(yíng)銷員李平5月份的銷售量為1.2萬(wàn)件,求李平5月份的收入.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正△ABC與等腰△ADE的頂點(diǎn)A重合,AD=AE,∠DAE=30°,將△ADE繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)BD=CE時(shí),∠BAD的大小可以是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有A(-2,1),B(3,1),C(2,3)三點(diǎn).請(qǐng)回答下列問(wèn)題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A,B,C的位置.

(2)求出以A,B,C三點(diǎn)為頂點(diǎn)的三角形的面積.

(3)y軸上是否存在點(diǎn)P,使以A,B,P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABFG和正方形CDEF的頂點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上.

(1)建立平面直角坐標(biāo)系,使點(diǎn)B,C的坐標(biāo)分別為(0,0)(5,0),并寫出點(diǎn)A,D,E,F(xiàn),G的坐標(biāo);

(2)連接BECG相交于點(diǎn)H,BECG相等嗎?并計(jì)算∠BHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求證:∠A+C=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為邊AB中點(diǎn),點(diǎn)E、F分別在射線CA、BC上,且AE=CF,連結(jié)EF.
猜想:如圖①,當(dāng)點(diǎn)E、F分別在邊CA和BC上時(shí),線段DE與DF的大小關(guān)系為_(kāi)_______.
探究:如圖②,當(dāng)點(diǎn)E、F分別在邊CA、BC的延長(zhǎng)線上時(shí),判斷線段DE與DF的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若DE=4,利用探究得到的結(jié)論,求△DEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案