【題目】如圖,矩形ABCD中,AB=4,BC=3,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則AP的長為_____.
【答案】2.4
【解析】
由折疊的性質(zhì)得出EP=AP,∠E=∠A=90°,BE=AB=4,由ASA證明△ODP≌△OEG,得出OP=OG,PD=GE,設(shè)AP=EP=x,則PD=GE=3﹣x,DG=x,求出CG、BG,根據(jù)勾股定理得出方程,解方程即可.
解:如圖所示:∵四邊形ABCD是矩形,
∴∠D=∠A=∠C=90°,AD=BC=3,CD=AB=4,
根據(jù)題意得:△ABP≌△EBP,
∴EP=AP,∠E=∠A=90°,BE=AB=4,
在△ODP和△OEG中,
,
∴△ODP≌△OEG(ASA),
∴OP=OG,PD=GE,
∴DG=EP,
設(shè)AP=EP=x,則PD=GE=3﹣x,DG=x,
∴CG=4﹣x,BG=4﹣(3﹣x)=1+x,
根據(jù)勾股定理得:BC2+CG2=BG2,
即32+(4﹣x)2=(x+1)2,
解得:x=2.4,
∴AP=2.4;
故答案為:2.4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了了解氣溫對用電量的影響,對去年自己家的每月用電量和當(dāng)?shù)貧鉁剡M(jìn)行了統(tǒng)計.去年當(dāng)?shù)孛吭碌钠骄鶜鉁厝鐖D1,小明家去年月用電量如圖2.
根據(jù)統(tǒng)計圖,回答下面的問題:
(1)當(dāng)?shù)厝ツ暝缕骄鶜鉁氐淖罡咧、最低值各為多少?相?yīng)月份的用電量各是多少?
(2)請簡單描述月用電量與氣溫之間的關(guān)系;
(3)假設(shè)去年小明家用電量是所在社區(qū)家庭用電量的中位數(shù),據(jù)此他能否預(yù)測今年該社區(qū)的年用電量?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時, 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店11月份購進(jìn)甲、乙兩種水果共花費(fèi)1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進(jìn)價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進(jìn)這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進(jìn)甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進(jìn)貨總量減少到120千克,設(shè)購進(jìn)甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,交于點.動點從點出發(fā),按的路徑運(yùn)動,且速度為,設(shè)出發(fā)時間為.
(1)求的長.
(2)當(dāng)時,求證:.
(3)當(dāng)點在邊上運(yùn)動時,若是以為腰的等腰三角形,求出所有滿足條件的的值.
(4)在整個運(yùn)動過程中,若(為正整數(shù)),則滿足條件的的值有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=3,BC=9.點D對應(yīng)點是G.
(1)求BE長;
(2)求EF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC中點,若點D在直線BC上運(yùn)動,連接OE,則在點D運(yùn)動過程中,線段OE的最小值是為( 。
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分線,點O在AB上,⊙O經(jīng)過B,D兩點,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若AB=6,sin∠BAC=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請你寫出圖中所有的等腰三角形;
(2)請你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com