【題目】如圖,直線y=﹣2x+2與兩坐標軸分別交于A、B兩點,將線段OA分成n等份,分點分別為P1,P2,P3,…,Pn﹣1,過每個分點作x軸的垂線分別交直線AB于點T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分別表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則當n=2015時,S1+S2+S3+…+Sn﹣1=_____.
【答案】
【解析】
根據(jù)圖象上點的坐標性質得出點T1,T2,T3,…,Tn﹣1各點縱坐標,進而利用三角形的面積得出S1、S2、S3、…、Sn﹣1,進而得出答案.
解:∵P1,P2,P3,…,Pn﹣1是x軸上的點,且OP1=P1P2=P2P3=…=Pn﹣2Pn﹣1=,
分別過點p1、p2、p3、…、pn﹣2、pn﹣1作x軸的垂線交直線y=﹣2x+2于點T1,T2,T3,…,Tn﹣1,
∴T1的橫坐標為:,縱坐標為:2﹣,
∴S1=×(2﹣)=(1﹣)
同理可得:T2的橫坐標為:,縱坐標為:2﹣,
∴S2=(1﹣),
T3的橫坐標為:,縱坐標為:2﹣,
S3=(1﹣)
…
Sn﹣1=(1﹣)
∴S1+S2+S3+…+Sn﹣1=[n﹣1﹣(n﹣1)]=×(n﹣1)=,
∵n=2015,
∴S1+S2+S3+…+S2014=××2014=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)a、b、c滿足(a-b)2=ab=c,有下列結論:①當c≠0時,=3;②當c=5時,a+b=5:③當a、b、c中有兩個相等時,c=0;④二次函數(shù)y=x2+bx-c與一次函數(shù)y=ax+1的圖象有2個交點.其中正確的有_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解2輛A型汽車、3輛B型汽氣車的進價共計80萬元;3輛A型汽車、2輛B型汽車的進價共計95萬元.
(1)求A、B兩種型號的汽車每輛進價分別為多少方元?
(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設計購買方案
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長AP交CD于F點,連結CP并延長CP交AD于Q點.給出以下結論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是直線x=1對于下列說法:①abc<0;②2a+b=0;③3a+c>0; ④當﹣1<x<3時,y>0;⑤a+b>m(am+b)(m≠1),其中正確有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,對角線AC與BD交于點O;在Rt△PMN中,∠MPN90°.
(1)如圖1,若點P與點O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點E、F,請直接寫出PE與PF的數(shù)量關系;
(2)將圖1中的Rt△PMN繞點O順時針旋轉角度α(0°<α<45°).
①如圖2,在旋轉過程中(1)中的結論依然成立嗎,若成立,請證明;若不成立,請說明理由;
②如圖2,在旋轉過程中,當∠DOM15°時,連接EF,若正方形的邊長為2,請求出線段EF的長;
③如圖3,旋轉后,若Rt△PMN的頂點P在線段OB上移動(不與點O、B重合),當BD3BP時,猜想此時PE與PF的數(shù)量關系,并給出證明;當BDm·BP時,請直接寫出PE與PF的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.
(1)求拋物線的函數(shù)表達式;
(2)如圖1,若點D在直線AB上方的拋物線上,求△DAB的面積最大時點D的坐標;
(3)如圖2,若點D在對稱軸左側的拋物線上,且點E(1,t)是射線CF上一點,當以C、B、D為頂點的三角形與△CAE相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,點E是邊BC的中點.
(1)、求證:BC 2=BDBA;
(2)、判斷DE與⊙O位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com