【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是

【答案】
【解析】解:連接AG,

由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG= =4,∴DG=DC﹣CG=1,則AG= = ,∵ ∠ABG=∠CBE,∴△ABG∽△CBE,∴ ,解得,CE= ,所以答案是:


【考點精析】利用相似三角形的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊的投標書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設(shè)規(guī)定的工期為x天,根據(jù)題意列出了方 程: ,則方案③中被墨水污染的部分應(yīng)該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCDM,N分別在直線AB,CD,E為平面內(nèi)一點.

(1)如圖1BME,E,END的數(shù)量關(guān)系為 (直接寫出答案);

(2)如圖2,BMEEF平分∠MEN,NP平分∠ENDEQNP,求∠FEQ的度數(shù)(用用含m的式子表示)

(3)如圖3GCD上一點,BMNEMN,GEKGEM,EHMNAB于點H,探究∠GEK,BMNGEH之間的數(shù)量關(guān)系(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形中,垂直平分線段連接

1)求證:四邊形是菱形;

2)若的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】修建某一建筑時,若請甲、乙兩個工程隊同時施工,5天可以完成,需付兩隊費用共3 500元;若先請甲隊單獨做3天,再請乙隊單獨做6天可以完成,需付兩隊費用共3 300元.問:

(1)甲、乙兩隊每天的費用各為多少?

(2)若單獨請某隊完成工程,則單獨請哪隊施工費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題: 如圖1,在矩形中,對角線、相交于點,且,點、、分別是、、的中點,連接所、、

求證:是等邊三角形.

小明經(jīng)探究發(fā)現(xiàn),連接、(如圖2),從而可證, ,使問題得到解決.

(1)請你按照小明的探究思路,完成他的證明過程;

參考小明思考問題的方法或用其他的方法,解決下面的問題:

(2)如圖3,在四邊形中, , 對角線、相交于點,且(),點、、分別是、的中點,連接、

①否存在與相等的線段?若存在,請找出并證明;若不存在,說明理由.

②求的度數(shù).(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

若一個整數(shù)能表示成a2+b2ab是整數(shù))的形式,則稱這個數(shù)為平和數(shù),例如5平和數(shù),因為522+1,再如,Mx2+2xy+2y2=(x+y2+y2x,y是整數(shù)),我們稱M也是平和數(shù)

1)請你寫一個小于5平和數(shù),并判斷34是否為平和數(shù)

2)已知Sx2+9y2+6x6y+kx,y是整數(shù),k是常數(shù),要使S平和數(shù),試求出符合條件的一個k值,并說明理由.

3)如果數(shù)m,n都是平和數(shù),試說明也是平和數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O機器人立即從點B出發(fā),沿直線勻速前進攔截小球恰好在點C處截住了小球如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在平行四邊形內(nèi)作一個菱形.甲,乙兩位同學的作法分別如下:

對于甲乙兩人的作法,可判斷( )

A.甲正確,乙錯誤B.甲錯誤,乙正確C.甲,乙均正確D.甲、乙均錯誤

查看答案和解析>>

同步練習冊答案