【題目】△ABC的兩條中線AD、BE交于點F,連接CF,若△ABC的面積為24,則△ABF的面積為( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】由中線得:S△ABD=S△ADC得S△ABD=S△ABE,由已知S△ABC=24,得出△ABE和△ABD的面積為12,根據(jù)等式性質(zhì)可知S△AEF=S△BDF,結(jié)合中點得:S△AEF=S△EFC=S△DFC=S△ADC,相當于把△ADC的面積平均分成三份,每份為4,由此可得S△ABF=S△ABD-S△BDF.
∵AD是中線,
∴S△ABD=S△ADC=S△ABC,
∵S△ABC=24,
∴S△ABD=S△ADC=×24=12,
同理S△ABE=12,
∴S△ABD=S△ABE,
∴S△ABD-S△ABF=S△ABE-S△ABF,
即S△AEF=S△BDF,
∵D是中點,
∴S△BDF=S△DFC,
同理S△AEF=S△EFC,
∴S△AEF=S△EFC=S△DFC=S△ADC=×12=4,
∴S△ABF=S△ABD-S△BDF=12-4=8,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠3=∠E.試說明:∠A=∠EBC.(請按圖填空,并補理由.)
證明:∵∠1=∠2 (已知),
∴________∥_______( ),
∴∠E=∠_______ ( ),
又∵∠E=∠3 (已知),
∴∠3=∠____________ ( 等量代換 ),
∴_________∥________ (內(nèi)錯角相等,兩直線平行),
∴∠A=∠EBC ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在x軸的上方,直角∠BOA繞原點O順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=﹣ 、y= 的圖象交于B、A兩點,則tanA= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關(guān)于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )
A.轉(zhuǎn)化思想
B.三角形的兩邊之和大于第三邊
C.兩點之間,線段最短
D.三角形的一個外角大于與它不相鄰的任意一個內(nèi)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距2400米,甲、乙兩人分別從A,B兩地同時出發(fā)相向而行,乙的速度是甲的2倍,已知乙到達A地15分鐘后甲到達B地.
(1)求甲每分鐘走多少米?
(2)兩人出發(fā)多少分鐘后恰好相距480米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(℃),但美國,英國等國家的天氣預(yù)報都使用華氏溫度(℉),兩種計量之間有如下對應(yīng):
攝氏溫度(℃) | … | 0 | 10 | … |
華氏溫度(℉) | … | 32 | 50 | … |
已知華氏溫度y(℉)是攝氏溫度x(℃)的一次函數(shù).
求該一次函數(shù)的解析式;
當華氏溫度14℉時,求其所對應(yīng)的攝氏溫度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盛盛同學(xué)到某高校游玩時,看到運動場的宣傳欄中的部分信息(如下表):
院系籃球賽成績公告 | |||
比賽場次 | 勝場 | 負場 | 積分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同學(xué)結(jié)合學(xué)習(xí)的知識設(shè)計了如下問題,請你幫忙完成下列問題:
(1)從表中可以看出,負一場積______分,勝一場積_______分;
(2)某隊在比完22場的前提下,勝場總積分能等于其負場總積分的2倍嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個分別含有30°,45°角的一副直角三角板.
(1)如圖1疊放在一起
若OC恰好平分∠AOB,則∠AOD= 度;
若∠AOC=40°,則∠BOD= 度;
(2)如圖2疊放在一起,∠AOD=4∠BOC,試計算∠AOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com