【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點(﹣1,2).

1)用含b的代數(shù)式表示c;

2)該拋物線與x軸有幾個交點?為什么?

【答案】1c3+b;(2)該拋物線與x軸有兩個交點.

【解析】

1)把(﹣12)代入y=﹣x2+bx+c問題可解;(2)令y=0,判斷根的判別式值取值范圍即可

解:(1)由題意知,﹣(﹣12b+c2

整理,得c3+b;

2)拋物線與x軸有兩個交點

理由:

b2+4cb2+4b+12=(b+22+80

∴該拋物線與x軸有兩個交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD=2AB,AH⊥CD于H,M為AD的中點,MN∥AB,連接NH,如果∠D=68°,則∠CHN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果4m×8m=215,那么m=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(2x2y3)2(xy)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象y1=kx+b與反比例函數(shù)的圖象交于點A(1,5)和點B(m,1).

(1)求m的值和反比例函數(shù)的解析式;

(2)當(dāng)x>0時,根據(jù)圖象直接寫出不等式≥kx+b的解集;

(3)若經(jīng)過點B的拋物線的頂點為A,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動,決定開設(shè)A:籃球、B:乒乓球、C:踢毽子、D:跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項目的人數(shù)所占的百分比為 , 其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC是等腰直角三角形,ACB=90°,直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點C與點D重合,讓△ABC沿這條直線向右平移,直到點A與點E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點所得四邊形是矩形,則四邊形ABCD一定滿足(
A.對角線相等
B.對角線互相平分
C.對角線互相垂直
D.對角線相等且相互平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)

(1)用代數(shù)式表示窗戶能射進(jìn)陽光的面積是 . (結(jié)果保留π)
(2)當(dāng) ,b=1時,求窗戶能射進(jìn)陽光的面積是多少?(取π≈3)
(3)小亮又設(shè)計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進(jìn)陽光的面積是否更大?如果更大,那么大多少?(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案