【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD , 交DC的延長(zhǎng)線于點(diǎn)E.求證:BC=DE
【答案】證明:∵四邊形ABCD是平行四邊形,
∴AB∥DC,AD=BC,
∴∠BAE=∠E ,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠E=∠DAE ,
∴DA=DE,
又∵AD=BC,
∴BC=DE
【解析】由平行四邊形的性質(zhì)得出AB∥CD,得出內(nèi)錯(cuò)角相等∠E=∠BAE,再由角平分線證出∠E=∠DAE,得出DA=DE,再根據(jù)平行四邊形的性質(zhì)即可得出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和平行四邊形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在9×7的小正方形網(wǎng)格中,△ABC的頂點(diǎn)A,B,C在網(wǎng)格的格點(diǎn)上.將△ABC向左平移3個(gè)單位、再向上平移3個(gè)單位得到△A′B′C′.再將△ABC按一定規(guī)律依次旋轉(zhuǎn):第1次,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△;第2次,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到△;第3次,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到△;第4次,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到△依次旋轉(zhuǎn)下去.
(1)在網(wǎng)格中畫出△A′B′C′和△;
(2)請(qǐng)直接寫出至少在第幾次旋轉(zhuǎn)后所得的三角形剛好為△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)長(zhǎng)方形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).
A方法:剪6個(gè)側(cè)面;
B方法:剪4個(gè)側(cè)面和5個(gè)底面.
現(xiàn)有19張硬紙板,裁剪時(shí) 張用A方法,其余用B方法.
(1)分別求裁剪出的側(cè)面和底面的個(gè)數(shù)(用含 的式子表示);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(jí)一班開展了一次“紀(jì)念抗日戰(zhàn)爭(zhēng)勝利七十周年”知識(shí)競(jìng)賽,競(jìng)賽題一共有20道題,下表是其中四位參賽選手的答對(duì)題數(shù)和不答或答錯(cuò)題數(shù)及得分情況,請(qǐng)你根據(jù)表格中所給的信息回答下列問題:
(1)問答對(duì)一題得多少分,不答或答錯(cuò)一題扣多少分?
(2)一位同學(xué)說他得了75分,請(qǐng)問可能嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個(gè)長(zhǎng)為 ,寬為 ( > )的長(zhǎng)方形,用剪刀沿圖中虛線(對(duì)稱軸)剪開,把它分成四塊形狀和大小都一樣的小長(zhǎng)方形,然后按圖(2)那樣拼成一個(gè)正方形,則中間空的部分的面積是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長(zhǎng)方形ABCD中,AB=8,BC=4,將長(zhǎng)方形沿AC折疊,使點(diǎn)D落在點(diǎn)D′處,求重疊部分△AFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)有2014條直線a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此類推,那么a1與a2014的位置關(guān)系是( )
A. 垂直
B. 平行
C. 垂直或平行
D. 重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點(diǎn)在B點(diǎn)的左側(cè))與y軸交于點(diǎn)C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時(shí),求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PC,若∠BCP=2∠ABC時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)F在AP上,過點(diǎn)P作PH⊥x軸于H點(diǎn),點(diǎn)K在PH的延長(zhǎng)線上,AK=KF,∠KAH=∠FKH,PF=﹣4a,連接KB并延長(zhǎng)交拋物線于點(diǎn)Q,求PQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com