【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經(jīng)過t秒后,以O(shè)、A為頂點作菱形OABC,使B、C點都在第一象限內(nèi),且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t= .
【答案】4 ﹣1
【解析】解:∵已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動, ∴經(jīng)過t秒后,
∴OA=1+t,
∵四邊形OABC是菱形,
∴OC=1+t,
當⊙P與OA,即與x軸相切時,如圖所示,則切點為O,此時PC=OP,過P作PE⊥OC,
∴OE=CE= OC,
∴OE= ,
在Rt△OPE中,
OE=OPcos30°=2 ,
∴ =2 ,
∴t=4 ﹣1,
所以答案是:4 ﹣1.
【考點精析】通過靈活運用菱形的性質(zhì)和切線的性質(zhì)定理,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個棱長為的正方體的每個面等分成個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當于挖去個小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園準備修建一塊長方形草坪,長為30米,寬為20米.并在草坪上修建如圖所示的十字路,已知十字路寬米,回答下列問題:
(1)修建十字路的面積是多少平方米?
(2)草坪(陰影部分)的面積是多少?
(3)如果十字路寬2米,那么草坪(陰影部分)的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校為開展研究性學(xué)習(xí),準備購買一定數(shù)量的兩人學(xué)習(xí)桌和三人學(xué)習(xí)桌,若購買1張兩人學(xué)習(xí)桌,1張三人學(xué)習(xí)桌需230元;若購買2張兩人學(xué)習(xí)桌,3張三人學(xué)習(xí)桌需590元.
(1)求兩人學(xué)習(xí)桌和三人學(xué)習(xí)桌的單價;
(2)學(xué)校欲投入資金不超過6600元,購買兩種學(xué)習(xí)桌共60張,以至少滿足137名學(xué)生的需求,有幾種購買方案?并求哪種購買方案費用最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形的一個內(nèi)角平分線把平行四邊形一條邊分成2 cm和3 cm兩部分,則平行四邊形的周長為( ).
A. 10 cm B. 14 cm C. 16 cm D. 14 cm和16 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù);
(2)如圖2,AB∥CD,AB=CD,BF=DE,求證:∠AEF=∠CFB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com