【題目】學校校園內(nèi)有一小山坡AB,經(jīng)測量,坡角∠ABC=30°,斜坡AB長為12米.為方便學生行走,決定開挖小山坡,使斜坡BD的坡比是1:3(即為CD與BC的長度之比).A,D兩點處于同一鉛垂線上,求開挖后小山坡下降的高度AD.

【答案】解:在Rt△ABC中,∠ABC=30°,
∴AC= AB=6,BC=ABcos∠ABC=12× = ,
∵斜坡BD的坡比是1:3,∴CD= BC= ,
∴AD=AC﹣CD=6﹣
答:開挖后小山坡下降的高度AD為(6﹣ )米
【解析】在直角△ABC中,利用三角函數(shù)即可求得BC、AC的長,然后在直角△BCD中,利用坡比的定義求得CD的長,根據(jù)AD=AC﹣CD即可求解.
【考點精析】認真審題,首先需要了解關(guān)于坡度坡角問題(坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,ABCD將點PAB、CD內(nèi)部,∠B,∠D,∠P滿足的數(shù)量關(guān)系是   ,并說明理由

(2)在圖1將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖2,利用(1)中的結(jié)論(可以直接套用),求∠BPD﹑∠B﹑∠D﹑∠BQD之間有何數(shù)量關(guān)系?

(3)科技活動課上,雨軒同學制作了一個圖(3)的“飛旋鏢”經(jīng)測量發(fā)現(xiàn)∠PAC=30°,∠PBC=35°,他很想知道∠APB與∠ACB的數(shù)量關(guān)系你能告訴他嗎?說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:

(1)第5個圖形有多少黑色棋子?
(2)第幾個圖形有2013顆黑色棋子?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為a厘米的正方形的四個角各剪去一個邊長為b厘米的小正方形.

(1)用代數(shù)式表示剩余部分的面積;

(2)當a=8.68,b=0.66時,求剩余部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,BECD相交于O.圖中全等的三角形有( 。⿲Γ

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:

(1)請直接寫出a、b、c的值.a=   ,b=   ,c=   

(2)數(shù)軸上a、b、c三個數(shù)所對應(yīng)的點分別為A、B、C,點A、B、C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關(guān)系式表示);

請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是(  )

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為,用兩個相同的管子在容器的高度處連通(即管子底端離容器底).現(xiàn)三個容器中,只有甲中有水,水位高,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水分鐘,乙的水位上升,則開始注入__________分鐘的水量后,甲與乙的水位高度之差是

查看答案和解析>>

同步練習冊答案