【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果axb0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a0b0

運(yùn)用上述知識(shí),解決下列問(wèn)題:

1)如果(a2b30,其中a、b為有理數(shù),那么a  b  ;

2)如果2ba﹣(ab45,其中a、b為有理數(shù),求3a2b的平方根.

【答案】1a=﹣2b3;(2±3

【解析】

(1)根據(jù)題意,可知,a2=0,﹣b3=0,即可求解,

2)根據(jù)題意,可知,,求出a,b的值,即可求解.

解:(1)∵(a2b30,其中ab為有理數(shù),

a2=0,﹣b3=0,解得:a=﹣2b3;

2)∵2ba﹣(a+b4 5,其中a、b為有理數(shù),

,

解得:,

3a+2b9,

3a+2b的平方根為±3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.

(1)AB上取一點(diǎn)D,當(dāng)AD=_________cm時(shí),△ACD∽△ABC.

(2)AC的延長(zhǎng)線上取一點(diǎn)E,當(dāng)CE=________cm時(shí),△AEB∽△ABC此時(shí)BEDC有怎樣的位置關(guān)系?________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)點(diǎn)軸的距離是   ;

3)請(qǐng)作出關(guān)于軸對(duì)稱的

4)寫(xiě)出點(diǎn)的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天津市奧林匹克中心體育場(chǎng)—“水滴位于天津市西南部的奧林匹克中心內(nèi),某校九年級(jí)學(xué)生由距水滴”10千米的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車(chē)先走,過(guò)了20分鐘后,其余同學(xué)乘汽車(chē)出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車(chē)的速度是騎車(chē)同學(xué)速度的2倍,求騎車(chē)同學(xué)的速度.

1)設(shè)騎車(chē)同學(xué)的速度為x千米/時(shí),利用速度、時(shí)間、路程之間的關(guān)系填寫(xiě)下表.(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)

速度(千米/時(shí))

所用時(shí)間(時(shí))

所走的路程(千米)

騎自行車(chē)

x

10

乘汽車(chē)

10

2)列出方程(組),并求出問(wèn)題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年泉州市初中體育中考中隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158,160,154,158,170則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1y=2x+1與直線l2y=mx+4相交于點(diǎn)P1,b

(1)b,m的值

(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長(zhǎng)為2,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的斜邊ABx軸上,點(diǎn)Cy軸上,∠ACB=90°,OC、OB的長(zhǎng)分別是一元二次方程x2﹣6x+8=0的兩個(gè)根,且OCOB.

(1)求點(diǎn)A的坐標(biāo);

(2)D是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A,B重合),過(guò)點(diǎn)D的直線ly軸平行,直線l交邊AC或邊BC于點(diǎn)P,設(shè)點(diǎn)D的橫坐標(biāo)為t,線段DP的長(zhǎng)為d,求d關(guān)于t的函數(shù)解析式;

(3)在(2)的條件下,當(dāng)d=時(shí),請(qǐng)你直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校要對(duì)如圖所示的一塊地進(jìn)行綠化,已知AD8米,CD6米,ADCD,AB26米,BC24米,求這塊地的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案