【題目】如圖,已知AF分別與BD、CE交于點G、H,其中∠1+∠2=180°.
(1)判斷BD和CE有怎樣的位置關(guān)系,并說明理由;
(2)若∠A=∠F,探索∠C與∠D的數(shù)量關(guān)系,并證明你的結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某種車的耗油量,我們對這種車在高速公路上做了耗油試驗,并把試驗的數(shù)據(jù)記錄下來, 制成如表:
汽車行駛時間 t(小時) | 0 | 1 | 2 | 3 | … |
油箱剩余油量 Q(升) | 100 | 94 | 88 | 82 | … |
(1)上表反映的兩個變量中,自變量是 ,因變量是 ;
(2)根據(jù)上表可知,該車油箱的大小為 升,每小時耗油 升;
(3)請求出兩個變量之間的關(guān)系式(用 t 來表示 Q).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)中,,將沿翻折至,連結(jié).
結(jié)論1:與重疊部分的圖形是等腰三角形;
結(jié)論2:.
試證明以上結(jié)論.
(應用與探究)
在中,已知,,將沿翻折至,連結(jié).若以、、、為頂點的四邊形是正方形,求的長.(要求畫出圖形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若DC=2,求圖中陰影部分的面積.(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝用三角形解釋二項和的乘方規(guī)律,稱之為“楊輝三角”,這個三角形給出了(a+b)n (n=1,2,3,4,…)的展開式的系數(shù)規(guī)律(按n的次數(shù)由大到小的順序):
1 1 (a+b)1=a+b
1 2 1 (a+b)2=a2+2ab+b2
1 3 3 1 (a+b)3=a3+3a2b+3ab2+b3
1 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4
…… ……
請依據(jù)上述規(guī)律,寫出(x1)2019展開式中含x2018項的系數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某初中學校欲向高一級學校推薦一名學生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學生民主投票,每人只能推薦一人(不設棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:
其次,對三名候選人進行了筆試和面試兩項測試.各項成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學根據(jù)上表繪制的一個不完全的條形圖.
請你根據(jù)以上信息解答下列問題:
(1)補全圖一和圖二;
(2)請計算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應該錄取誰?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.(以下計算結(jié)果精確到0.1m)
(1)求小明此時與地面的垂直距離CD的值;
(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,同學們探究了角平分線的作法.下面給出三個同學的作法:
小紅的作法
如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再過點O作MN的垂線,垂足為P,則射線OP便是∠AOB的平分線.
小明的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合,過角尺頂點C的射線OC便是∠AOB的平分線. |
小剛的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再分別過點M,N作OA,OB的垂線,交點為P,則射線OP便是∠AOB的平分線. |
請根據(jù)以上情境,解決下列問題
(1)小紅的作法依據(jù)是 .
(2)為說明小明作法是正確的,請幫助他完成證明過程.
證明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依據(jù))
(3)小剛的作法正確嗎?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com