【題目】如圖所示,直線CD與以線段AB為直徑的圓相切于點D并交BA的延長線于點C,且AB=2,AD=1,P點在切線CD上移動.當∠APB的度數(shù)最大時,則∠ABP的度數(shù)為(

A.15° B.30° C.60° D.90°

【答案】B.

【解析】

試題分析:連接BD,由題意可知當P和D重合時,∠APB的度數(shù)最大,利用圓周角定理和直角三角形的性質(zhì)即可求出∠ABP的度數(shù).

試題解析:連接BD,

直線CD與以線段AB為直徑的圓相切于點D,

∠ADB=90°,

當∠APB的度數(shù)最大時,

則P和D重合,

∠APB=90°,

AB=2,AD=1,

sin∠DBA=,

∠ABP=30°,

當∠APB的度數(shù)最大時,∠ABP的度數(shù)為30°.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,-2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一塊矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好圍成一個容積為15m3的無蓋長方體水箱,且此長方體水箱的底面長比寬多2米.求該矩形鐵皮的長和寬各是多少米?若設(shè)該矩形鐵皮的寬是x米,則根據(jù)題意可得方程為(  )

A. (x+2)(x﹣2)×1=15 B. x(x﹣2)×1=15 C. x(x+2)×1=15 D. (x+4)(x﹣2)×1=15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下面各式分解因式:(1ax39ax;

2x22x(x3y)(x3y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明認為下列括號內(nèi)都可以填a4 , 你認為使等式成立的只能是(
A.a12=(3
B.a12=(4
C.a12=(2
D.a12=(6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列一元二次方程中,沒有實數(shù)根的是(  )

A. x2﹣2x=0 B. x2+4x﹣1=0 C. 2x2﹣4x+3=0 D. 3x2=5x﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品經(jīng)過連續(xù)兩次降價,銷售單價由原來的125元降到80元,則平均每次降價的百分率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|x+1|+|y2|=0,則xy=___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|a|=8|b|=5,且a+b0,那么ab=___________.

查看答案和解析>>

同步練習冊答案