【題目】已知:∠AOB

求作:∠A'O'B',使∠A'O'B'=AOB

作法:①以O為圓心,任意長為半徑畫弧,分別交OA,OB于點(diǎn)C,D;

②畫一條射線O'A',以點(diǎn)O'為圓心,OC長為半徑面弧,交O'A'于點(diǎn)C;

③以點(diǎn)C'為圓心,CD長為半徑畫弧,與第②步中所畫的弧相交于點(diǎn)D';

④過點(diǎn)D'畫射線O'B,則∠A'O'B'=AOB

根據(jù)上面的作法,完成以下問題:

(1)使用直尺和圓規(guī),作出∠A'O'B'(請保留作圖痕跡)

(2)完成下面證明∠A'O'B'=AOB的過程(注:括號里填寫推理的依據(jù))

證明:由作法可知O'C'=OCO'D'=OD,D'C'=_________,

∴△C'O'D'≌△COD(________)

∴∠A'O'B'=AOB(________)

【答案】1)見詳解(2DC;SSS;全等三角形的對應(yīng)角相等.

【解析】

1)根據(jù)上面做法即可作圖;

2)根據(jù)全等三角形的判定定理及性質(zhì)定理即可得出.

1)如圖所示, 即為所求.

2)證明:

由作法可知O'C'=OC,O'D'=OD,D'C=DC

∴△C'O'D'≌△COD(SSS);

∴∠A'O'B'=AOB(全等三角形的對應(yīng)角相等)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.

根據(jù)圖示填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

A

______

85

______

B

85

______

100

結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學(xué)校的決賽成績較好;

計算兩校決賽成績的方差,并判斷哪個學(xué)校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn),

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動到點(diǎn)C停止.作DEAC交邊ABBC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動時間為t(s).

(1)求AC的長.

(2)請用含t的代數(shù)式表示線段DE的長.

(3)當(dāng)點(diǎn)F在邊BC上時,求t的值.

(4)設(shè)正方形DEFGABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時,求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(1,4),B(a,b),其中a>1.過點(diǎn)Ax軸垂線,垂足為C,過點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當(dāng)ADBC時,求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙OA、B兩點(diǎn),CD⊙O于點(diǎn)E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,,④ODOC=DEEC,,正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進(jìn)50臺電視機(jī),已知該廠家生產(chǎn)3種不同型號的電視機(jī),出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進(jìn)兩種不同型號的電視機(jī)共50臺,用去9萬元,請你計算一下商場有哪幾種進(jìn)貨方案?

2)若商場銷售一臺A種電視機(jī)可獲利150元,銷售一臺B種電視機(jī)可獲利200元,銷售一臺C種電視機(jī)可獲利250元,在同時購進(jìn)兩種不同型號的電視機(jī)方案中,為了使銷售時獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

同步練習(xí)冊答案