【題目】如圖,矩形的邊,,點(diǎn)從點(diǎn)出發(fā),沿射線移動(dòng),以為直徑作圓,點(diǎn)為圓與射線的公共點(diǎn),連接,過點(diǎn)作,與圓相交于點(diǎn), 連接.
(1)試說明四邊形是矩形;
(2)當(dāng)圓與射線相切時(shí),點(diǎn)停止移動(dòng),在點(diǎn)移動(dòng)的過程中:
①矩形的面積是否存在最大值或最小值?若存在,求出這個(gè)最大值或最小值;若不存在,說明理由;
②求點(diǎn)移動(dòng)路線的長.
【答案】(1)證明詳見解析;(2)①最小值為;最大值為2;②cm.
【解析】
試題(1)只要證得三個(gè)內(nèi)角等于90°即可;
(2)①應(yīng)用三角函數(shù)可得,所以,然后只需求出CF的范圍就可以求出的范圍;
②根據(jù)圓周角定理和矩形的性質(zhì)可證得∠GDC=∠FDE=定值,從而得到點(diǎn)G的移動(dòng)的路線是線段,只需找到點(diǎn)G的起點(diǎn)和終點(diǎn),求出該線段的長度即可.
試題解析:(1)∵CE是⊙O的直徑,點(diǎn)F、G在⊙O上,∴∠EFC=∠EGC=90°,
又∵EG⊥EF,∴∠FEG=90°,∴四邊形EFCG是矩形;
(2)①∵四邊形EFCG是矩形,∴∠BCD=90°,∴,
∵∠CEF=∠BDC,∴=,即,∴,
∴,
∵當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CF=BC=4;
當(dāng)⊙O與射線BD相切時(shí),點(diǎn)F與點(diǎn)D重合,
此時(shí)CF=CD=3;
當(dāng)CF⊥BD時(shí),,
∴,
∴當(dāng)CF=cm時(shí),取得最小值為,
當(dāng)CF=4cm時(shí),取得最大值為2.
②如答圖4,連接DG,并延長DG交BC得延長線與點(diǎn)G’.
∵∠BDG=∠FEG=90°,又∵∠DCG’=90°,∴點(diǎn)G得移動(dòng)路線為線段DG’,
∵CD=3cm,∴CG’=,∴DG’=(cm).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價(jià)﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖冢埱蟪M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 軸于點(diǎn) ,點(diǎn)是直線 上的動(dòng)點(diǎn).直線 交 于點(diǎn) ,過點(diǎn) 作直線 垂直于 ,垂足為 ,過點(diǎn) , 的直線 交 于點(diǎn) E,當(dāng)直線 ,,能圍成三角形時(shí),設(shè)該三角形面積為 ,當(dāng)直線 ,,能圍成三角形時(shí),設(shè)該三角形面積為 .
(1)若點(diǎn) 在線段 上,且 ,則 點(diǎn)坐標(biāo)為_________;
(2)若點(diǎn) 在直線上,且,則的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:≌;
(2)當(dāng)時(shí),求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,連接BE,點(diǎn)F、G分別為AD、AC的中點(diǎn),連接FG.在△ADE繞A旋轉(zhuǎn)的過程中,當(dāng)B、D、E三點(diǎn)共線時(shí),AB=,AD=1,則線段FG的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.
(1)求證:∠ACD=∠B;
(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn);
①求tan∠CFE的值;
②若AC=3,BC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),的“夢想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C.
填空:該拋物線的“夢想直線”的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將以AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若為該拋物線的“夢想三角形”,求點(diǎn)N的坐標(biāo);
當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com