【題目】填寫(xiě)下列空格完成證明:如圖, EFAD , 1 2 BAC 70 ,求AGD

解:∵ EFAD ,

2 .(

1 2 ,

1 3.(

.(

BAC 180 .(

BAC 70 ,

AGD

【答案】3 ;兩直線(xiàn)平行,同位角相等;等量代換;DGAB ;內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;∠AGD ;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);110

【解析】

此題要注意由EFAD,可得∠2=3,由等量代換可得∠1=3,可得DGBA,根據(jù)平行線(xiàn)的性質(zhì)可得∠BAC+AGD=180°,即可求解.

EF=AD

∴∠2=3,(兩直線(xiàn)平行,同位角相等)

∵∠1=2,

∴∠1=3,(等量代換)

DGAB(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)

∴∠BAC+AGD=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))

∵∠BAC=70°,

∴∠AGD=110°

故答案為:∠3;兩直線(xiàn)平行,同位角相等;等量代換;DGAB;內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;∠AGD;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);110

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=kx+b的圖象分別交x軸,y軸于A、B兩點(diǎn),與反比例函數(shù)y2= 的圖象交于C、D兩點(diǎn),已知點(diǎn)C的坐標(biāo)為(﹣4,﹣1),點(diǎn)D的橫坐標(biāo)為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)x為何值時(shí),y1>y2?
(3)點(diǎn)P是反比例函數(shù)在第一象限的圖象上的點(diǎn),且點(diǎn)P的橫坐標(biāo)大于2,過(guò)點(diǎn)P做x軸的垂線(xiàn),垂足為點(diǎn)E,當(dāng)△APE的面積為3時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明坐在堤邊A處垂釣,河堤AC與水平面的夾角為30°,AC的長(zhǎng)為 米,釣竿AO與水平線(xiàn)的夾角為60°,其長(zhǎng)為3米,若AO與釣魚(yú)線(xiàn)OB的夾角為60°,求浮漂B與河堤下端C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)E,F(xiàn)分別在BC,AC上,且AF=CE.

(1)填空:∠A的度數(shù)是   

(2)探究DEDF的關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P垂直于AC的直線(xiàn)交菱形ABCD的邊于M,N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△CMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期天,小明從家里出發(fā)到圖書(shū)館去看書(shū),再回到家.他離家的距離y(千米)與時(shí)間t(分鐘)的關(guān)系如圖所示.

根據(jù)圖像回答下列問(wèn)題:

(1)小明家離圖書(shū)館的距離是________千米;

(2)小明在圖書(shū)館看書(shū)的時(shí)間為_(kāi)_______小時(shí);

(3)小明去圖書(shū)館時(shí)的速度是________千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測(cè)得大廈AB的高度,在大廈前的平地上選擇一點(diǎn)C,測(cè)得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點(diǎn)D處(C,D,B三點(diǎn)在同一直線(xiàn)上),又測(cè)得大廈頂端A的仰角為45°,請(qǐng)你計(jì)算該大廈的高度.(精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Aa,0),點(diǎn)B2a,0),且AB的左邊,點(diǎn)C1,﹣1),連接ACBC,若在AB,BC,AC所圍成區(qū)域內(nèi)(含邊界),橫坐標(biāo)和縱坐標(biāo)都為整數(shù)的點(diǎn)的個(gè)數(shù)為4個(gè),那么a的取值范圍為( )

A. 1a≤0B. 0≤a1C. 1a1D. 2a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明:

如圖,已知ADBC,EFBC,1=2.

求證:DGBA.

證明:ADBC,EFBC(已知)

∴∠EFB=ADB=90°(

EFAD(

∴∠1=BAD(

∵∠1=2(已知)

(等量代換)

DGBA.(

查看答案和解析>>

同步練習(xí)冊(cè)答案