【題目】如圖,DB∥AC,且DB=AC,E是AC的中點(diǎn).
(1)求證:四邊形BDEC是平行四邊形;
(2)連接AD、BE,△ABC添加一個(gè)條件: ,使四邊形DBEA是矩形(不需說(shuō)明理由).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為獎(jiǎng)勵(lì)學(xué)習(xí)之星,準(zhǔn)備在某商店購(gòu)買A、B兩種文具作為獎(jiǎng)品,已知一件A種文具的價(jià)格比一件B種文具的價(jià)格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.
(1)求一件A種文具的價(jià)格;
(2)根據(jù)需要,該校準(zhǔn)備在該商店購(gòu)買A、B兩種文具共150件.
①求購(gòu)買A、B兩種文具所需經(jīng)費(fèi)W與購(gòu)買A種文具的件數(shù)a之間的函數(shù)關(guān)系式;
②若購(gòu)買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計(jì)劃經(jīng)費(fèi)不超過(guò)2750元,求有幾種購(gòu)買方案,并找出經(jīng)費(fèi)最少的方案,及最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知:點(diǎn)A和點(diǎn)B(如圖1),根據(jù)條件畫(huà)圖(用三角板和量角器):
①畫(huà)射線BA;
②畫(huà)∠ABC=90°,使得點(diǎn)C在線段AB上方且AB=BC;
③連接AC,畫(huà)出∠ABC的角平分線BD,交AC于D.通過(guò)觀察、度量、猜想獲得線段BD、AC的關(guān)系.
(2)已知:如圖2,∠AOB=150,OC平分∠AOB,AO⊥DO,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將口ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中點(diǎn),AD=DC=2,下面結(jié)論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正確的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)A(0,3)的一次函數(shù)y1=kx+b(k≠0)的圖象與正比例函數(shù)y2=2x的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)是1.
(1)求點(diǎn)B的坐標(biāo)及k、b的值;
(2)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積
(3)當(dāng)y1≤y2時(shí),自變量x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系(如圖),直線的經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)求、的值;
(2)如果拋物線經(jīng)過(guò)點(diǎn)、,該拋物線的頂點(diǎn)為點(diǎn),求的值;
(3)設(shè)點(diǎn)在直線上,且在第一象限內(nèi),直線與軸的交點(diǎn)為點(diǎn),如果,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A在y軸的正半軸上,點(diǎn)C在x軸的正半軸上,線段OA,OC的長(zhǎng)分別是m,n且滿足(m-6)2+=0,點(diǎn)D是線段OC上一點(diǎn),將△AOD沿直線AD翻折,點(diǎn)O落在矩形對(duì)角線AC上的點(diǎn)E處
(1)求線段OD的長(zhǎng)
(2)求點(diǎn)E的坐標(biāo)
(3)DE所在直線與AB相交于點(diǎn)M,點(diǎn)N在x軸的正半軸上,以M、A、N、C為頂點(diǎn)的四邊形是平行四邊形時(shí),求N點(diǎn)坐
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com