【題目】已知點,試分別根據(jù)下列條件,求出點的坐標(biāo).
(1)點在軸上;
(2)點的橫坐標(biāo)比縱坐標(biāo)大2;
(3)點在過,且與軸平行的直線上.
(4)點在到兩個坐標(biāo)軸的距離相等.
【答案】(1),(2),(3),(4)或
【解析】
(1)根據(jù)y軸上的點的橫坐標(biāo)等于零,可得方程,通過解方程,可得答案.
(2)根據(jù)橫坐標(biāo)比縱坐標(biāo)大2,可得方程,通過解方程,可得答案.
(3)根據(jù)平行于軸的直線上的所有點的縱坐標(biāo)相等,可得方程,通過解方程,可得答案.
(4)根據(jù)到兩個坐標(biāo)軸的距離相等,可得方程,通過解方程,可得答案.
(1)∵點在軸上,
∴點的橫坐標(biāo)為0,
即,解得,
則.
(2)∵點的橫坐標(biāo)比縱坐標(biāo)大2,
∴,解得,
則.
(3)∵點在過,且與軸平行的直線上,
∴點的縱坐標(biāo)等于,
即,解得,
則.
(4)∵點到兩個坐標(biāo)軸的距離相等,
∴或,
解得或,
則或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE⊥AB,OF⊥CD.
(1)若OC恰好是∠AOE的平分線,則OA是∠COF的平分線嗎?請說明理由;
(2)若∠EOF=5∠BOD,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵居民節(jié)約用水,某市決定對居民用水收費(fèi)實行“階梯價”,即當(dāng)每月用水量不超過15噸時(包括15噸),采用基本價收費(fèi);當(dāng)每月用水量超過15噸時,超過部分每噸采用市場價收費(fèi).小蘭家4、5月份的用水量及收費(fèi)情況如下表:
月份 | 用水量(噸) | 水費(fèi)(元) |
4 | 22 | 51 |
5 | 20 | 45 |
(1)求該市每噸水的基本價和市場價.
(2)設(shè)每月用水量為n噸,應(yīng)繳水費(fèi)為m元,請寫出m與n之間的函數(shù)關(guān)系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖,正方形ABCD,M是BC延長線上一點,過B作BE⊥DM于點E,交DC于點F,過F作FG∥BC交BD于點G,連接GM,若S△EFD= DF2 , AB=4 ,則GM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標(biāo)為(6,0),點C坐標(biāo)為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標(biāo);
(Ⅱ)點F是拋物線上的動點,當(dāng)∠FBA=∠BDE時,求點F的坐標(biāo);
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標(biāo)平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為正方形ABCD對角線的交點,點E,F(xiàn)分別在DA和CD的延長線上,且AE=DF,連接BE,AF,延長FA交BE于G.
(1)試判斷FG與BE的位置關(guān)系,并證明你的結(jié)論;
(2)連接OG,求∠OGF的度數(shù);
(3)若AE= ,tan∠ABG= ,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE是∠AOC的平分線,∠BOC=130°,∠BOF=140°,則∠EOF的度數(shù)為( )
A. 95° B. 65°
C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點C作CF平分∠DCE交DE于點F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com