【題目】如圖所示,△ABC直角三角形,延長AB到D,使BD=BC,在BC上取BE=AB,連接DE.△ABC順時針旋轉(zhuǎn)后能與△EBD重合,那么:
(1)旋轉(zhuǎn)中心是哪一點?旋轉(zhuǎn)角是多少度?
(2)AC與DE的關(guān)系怎樣?請說明理由.
【答案】(1)旋轉(zhuǎn)角是90度;(2)AC=DE,AC⊥DE.理由見解析.
【解析】
(1)由條件易得BC和BD,BA和BE為對應(yīng)邊,而△ABC旋轉(zhuǎn)后能與△EBD重合,于是可判斷旋轉(zhuǎn)中心為點B;根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ABE等于旋轉(zhuǎn)角,從而得到旋轉(zhuǎn)角度;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和定理即可判斷AC=DE,AC⊥DE.
(1)∵BC=BD,BA=BE,∴BC和BD,BA和BE為對應(yīng)邊.
∵△ABC旋轉(zhuǎn)后能與△EBD重合,∴旋轉(zhuǎn)中心為點B;
∵∠ABC=90°,而△ABC旋轉(zhuǎn)后能與△EBD重合,∴∠ABE等于旋轉(zhuǎn)角,∴旋轉(zhuǎn)角是90度;
(2)AC=DE,AC⊥DE.理由如下:
延長DE交AC于F.
∵△ABC繞點B順時針旋轉(zhuǎn)90°后能與△EBD重合,∴DE=AC,∠C=∠D.
∵∠A+∠C=90°,∴∠A+∠D=90°,∴∠AFD=90°,∴AC⊥DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是矩形ABCD邊AB上一動點(不與點B重合),過點E作EF⊥DE交BC于點F,連接DF.已知AB = 4cm,AD = 2cm,設(shè)A,E兩點間的距離為xcm,△DEF面積為ycm2.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了x與y的幾組值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF面積最大時,AE的長度為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx(a,b為常數(shù))的圖象如圖所示,設(shè)關(guān)于x的一元二次方程ax2+bx+m=1的兩個實數(shù)根分別為x1,x2,若x1x2>0,則實數(shù)m的取值范圍是( )
A.0≤m<3B.0<m≤3C.1≤m<4D.1<m≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組有且只有4個整數(shù)解,且使關(guān)于y的分式方程=3的解為正數(shù),則符合條件的所有整數(shù)a的和為( 。
A.﹣2B.0C.3D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年以來豬肉價格不斷走高,引起了民眾與區(qū)政府的高度關(guān)注,當(dāng)市場豬肉的平均價格每 千克達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.據(jù)統(tǒng)計:從今年年初至 11月 10 日,豬排骨價格不斷走高,11 月 10 日比年初價格上漲了 75%.今年 11 月 10 日某市 民于 A 超市購買 5 千克豬排骨花費 350 元.
(1)A 超市 11 月排骨的進貨價為年初排骨售價的倍,按 11 月 10 日價格出售,平均一天能銷售出 100 千克,超市統(tǒng)計發(fā)現(xiàn):若排骨的售價每千克下降 1 元,其日銷售量就增加 20千克,超市為了實現(xiàn)銷售排骨每天有 1000 元的利潤,為了盡可能讓顧客優(yōu)惠應(yīng)該將排骨的 售價定位為每千克多少元?
(2)11 月 11 日,區(qū)政府決定投入儲備豬肉并規(guī)定排骨在 11 月 10 日售價的基礎(chǔ)上下調(diào) a%出售,A 超市按規(guī)定價出售一批儲備排骨,該超市在非儲備排骨的價格不變情況下,該天的兩種豬排骨總銷量比 11 月 10 日增加了 a%,且儲備排骨的銷量占總銷量的,兩種排骨銷售的總金額比 11 月 10 日提高了a%,求 a 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,是邊的中點,于,連接,下列結(jié)論:(1);(2);(3);其中正確的有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在探究一元二次方程根與系數(shù)的關(guān)系中發(fā)現(xiàn):如果關(guān)于x的方程x2+px+q=0的兩個根是x1,x2,那么由求根公式可推出x1+x2=﹣p,x1x2=q,請根據(jù)這一結(jié)論,解決下列問題:
(1)若α,p是方程x2﹣3x+1=0的兩根,則α+β= ,αβ= ;若2,3是方程x2+mx+n=0的兩根,則m= ,n= ;
(2)已知a,b滿足a2﹣5a+3=0,b2﹣5b+3=0,求的值;
(3)已知a,b,c滿足a+b+c=0,abc=5,求正整數(shù)c的最小值,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進行了探究下面是小美的探究過程,請補充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點H,E,F分別在邊AB,BC,CD上,AE⊥HF于點G.
(1)如圖1,求證:AE=HF;
(2)如圖2,延長FH,交CB的延長線于M,連接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如圖3,若AB=2,BH=DF,將線段HF繞點F順時針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為 .(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com