【題目】如圖,將RtABC繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△DBE,DE的延長(zhǎng)線恰好經(jīng)過(guò)AC的中點(diǎn)F,連接AD,CE

1)求證:AECE

2)若BC,求AB的長(zhǎng).

【答案】1)見(jiàn)解析;(2AB2+.

【解析】

1)由旋轉(zhuǎn)的性質(zhì)可得∠BAC=CDF,可證DF垂直平分AC,可得AE=CE

2)由全等三角形的性質(zhì)可得BE=CE=,由勾股定理可求CE=AE=2,即可求AB的長(zhǎng).

1)∵將RtABC繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到DBE,

∴△ABC≌△DBE,

∴∠BAC=∠CDF

∵∠BAC+ACB90°,

∴∠CDF+ACB90°,

DFAC,且點(diǎn)FAC中點(diǎn),

DF垂直平分AC

AECE;

2)∵△ABC≌△DBE,

BECE,

CEAE2,

ABAE+BE2+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2﹣x+m(m為常數(shù))的圖象如圖所示,當(dāng)x=a時(shí),y<0;那么當(dāng)x=a﹣1時(shí),函數(shù)值( )

A.y<0
B.0<y<m
C.y>m
D.y=m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,若有一動(dòng)點(diǎn)出發(fā),沿勻速運(yùn)動(dòng),則的長(zhǎng)度與時(shí)間之間的關(guān)系用圖像表示大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有A,B兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無(wú)效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為x,B轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為P(x,y).

(1)請(qǐng)用列表或畫樹狀圖的方法寫出所有可能得到的點(diǎn)P的坐標(biāo);
(2)計(jì)算點(diǎn)P在函數(shù)y= 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,且BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),速度為2cm/秒;同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),速度為1cm/秒,運(yùn)動(dòng)過(guò)程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).

(1)當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?
(2)設(shè)四邊形PQCM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)E是BC的中點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則tan∠ECF=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)平面直角坐標(biāo)系中,點(diǎn)Px,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)Pxy)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)Px,y)的勾股值,記為[P],即[P]=|x|+|y|(其中的“+”是四則運(yùn)算中的加法),例如點(diǎn)P1,2)的勾股值[P]=|1|+|2|=3

1)求點(diǎn)A, )的勾股值[A]

2)若將點(diǎn)A向上平移3個(gè)單位,再向左平移2個(gè)單位后得到點(diǎn)B,請(qǐng)直接寫出點(diǎn)B的坐標(biāo),并求出點(diǎn)B的勾股值 [B];

3)若點(diǎn)Mx軸的上方,其橫,縱坐標(biāo)均為整數(shù),且[M]=3,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD中,∠B60°,AB4,點(diǎn)EBC上,CE2,若點(diǎn)P是菱形上異于點(diǎn)E的另一點(diǎn),CECP,則EP的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案