【題目】
如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )
A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC=90° D.AG⊥BE
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一蓄水池有漏水現(xiàn)象,如果用一臺水泵向該水池注水,需用8小時才能將空水池注滿,如果用同樣的兩臺水泵向該水池注水,只需3.2小時就能將空池注滿,如要求2小時內(nèi)就將該水池注滿,至少需要幾臺這樣的水泵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市區(qū)自2014年1月起,居民生活用水開始實行階梯式計量水價,該階梯式計量水價分為三級(如下表所示):
月用水量(噸) | 水價(元/噸) |
第一級 20噸以下(含20噸) | 1.6 |
第二級 20噸﹣30噸(含30噸) | 2.4 |
第三級 30噸以上 | 3.2 |
例:某用戶的月用水量為32噸,按三級計量應繳水費為:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用戶的月用水量為12噸,則甲需繳的水費為 元;
(2)如果乙用戶繳的水費為39.2元,則乙月用水量 噸;
(3)如果丙用戶的月用水量為a噸,則丙用戶該月應繳水費多少元?(用含a的代數(shù)式表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去,如果共剪次,則可剪出 個正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點,E是CD的中點, 過點C作CF//AB交AE的延長線于點F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設計出來;
(2)設生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多肉植物是指植物營養(yǎng)器官肥大的植物,又稱肉質(zhì)植物或多肉花卉,由于體積小、外形萌、色彩斑斕,茶幾陽臺擺放方便,近年來越來越受到廣大養(yǎng)花愛好者的喜愛.多肉植物則被親切地稱為“肉肉”、“多肉君”.大學畢業(yè)生陳江河發(fā)現(xiàn)這個商機后,第一次果斷購進甲乙兩種多肉植物共500株.甲種多肉植物每株成本5元,售價10元;乙種多肉植物每株成本8元,售價10元.
(1)由于啟動資金有限,第一次購進多肉植物的金額不得超過3400元,則甲種多肉植物至少購進多少株?
(2)多肉植物一經(jīng)上市,十分搶手,陳江河決定第二次購進甲乙兩種多肉植物,它們的進價不變.甲種多肉植物進貨量在(1)的最少進貨量的基礎上增加了,售價也提高了;乙種多肉植物的售價和進貨量不變,但是由于乙種多肉植物的耐熱性不強,導致銷售完之前它的成活率為.結(jié)果第二次共獲利2700元.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列三行數(shù):
(1)第①行的第n個數(shù)是_______(直接寫出答案,n為正整數(shù))
(2)第②、③行的數(shù)與第①行相對應的數(shù)分別有什么關系?
(3)取每行的第9個數(shù),記這三個數(shù)的和為a,化簡計算求值:(5a2-13a-1)-4(4-3a+a2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com