【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)若∠ABE=15°,∠BAD=40°,則∠BED=________°;
(2)請?jiān)趫D中作出△BED中BD邊上的高EF;
(3)若△ABC的面積為40,BD=5,則點(diǎn)E到BC邊的距離為多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是老師在嘉嘉的數(shù)學(xué)作業(yè)本上截取的部分內(nèi)容:
問題:(1)這種解方程組的方法叫什么方法;嘉嘉的解法正確嗎?如果不正確,從哪一步開始出錯(cuò)的?請你指出錯(cuò)誤的原因,并求出正確的解.
(2)請用不同于(1)中的方法解這個(gè)方程組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動(dòng)點(diǎn)(A,B,C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.
(1)如圖①,若AB∥ON,則
①∠ABO的度數(shù)是________.
②當(dāng)∠BAD=∠ABD時(shí),x=________;當(dāng)∠BAD=∠BDA時(shí),x=________.
(2)如圖②,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果A、B、C三點(diǎn)在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點(diǎn),那么M,N兩點(diǎn)之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2013年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013成都)若正整數(shù)n使得在計(jì)算n+(n+1)+(n+2)的過程中,各數(shù)位均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“本位數(shù)”.例如2和30是“本位數(shù)”,而5和91不是“本位數(shù)”.現(xiàn)從所有大于0且小于100的“本位數(shù)”中,隨機(jī)抽取一個(gè)數(shù),抽到偶數(shù)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為創(chuàng)建省衛(wèi)生城市,有關(guān)部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個(gè),擺放于入城大道的兩側(cè),搭配每個(gè)造型所需花卉數(shù)量的情況下表所示,結(jié)合上述信息,解答下列問題:
(1)符合題意的搭配方案有幾種?
(2)如果搭配一個(gè)A種造型的成本為1000元,搭配一個(gè)B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?
造型花卉 | 甲 | 乙 |
A | 80 | 40 |
B | 50 | 70 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為A(6,0)、B(0,2),以AB為斜邊在右上方作Rt△ABC.設(shè)點(diǎn)C坐標(biāo)為(x,y),則(x+y)的最大值= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com