【題目】下列說法不正確的是(
A.坐標(biāo)平面內(nèi)的點與有序數(shù)對是一一對應(yīng)的
B.在x軸上的點縱坐標(biāo)為零
C.在y軸上的點橫坐標(biāo)為零
D.平面直角坐標(biāo)系把平面上的點分為四部分

【答案】D
【解析】解:A、由坐標(biāo)平面內(nèi)的點與有序數(shù)對的關(guān)系,可知坐標(biāo)平面內(nèi)的點與有序數(shù)對是一一對應(yīng)的,原說法正確;
B、由x軸上的點的坐標(biāo)特征,可知在x軸上的點縱坐標(biāo)為零,原說法正確;
C、由y軸上的點的坐標(biāo)特征,可知在y軸上的點橫坐標(biāo)為零,原說法正確;
D、平面直角坐標(biāo)系由四個象限和兩個坐標(biāo)軸組成,原說法錯誤.
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)

(1)求反比例函數(shù)的解析式;

(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在六邊形的頂點處分別標(biāo)上數(shù)1, 2, 3, 4,5, 6,能否使任意三個相鄰頂點處的三個數(shù)之和
(1)大于9?
(2)大于10?如能,請在圖中標(biāo)出來;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把函數(shù)y=x的圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.

類似地,我們可以認識其他函數(shù).

(1)把函數(shù)的圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?/span> 倍,橫坐標(biāo)不變,得到函數(shù)的圖象;也可以把函數(shù)的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span> 倍,縱坐標(biāo)不變,得到函數(shù)的圖象.

(2)已知下列變化:①向下平移2個單位長度;②向右平移1個單位長度;③向右平移個單位長度;④縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變.

(Ⅰ)函數(shù)的圖象上所有的點經(jīng)過④→②→①,得到函數(shù) 的圖象;

(Ⅱ)為了得到函數(shù)的圖象,可以把函數(shù)的圖象上所有的點

A.①→⑤→③B.①→⑥→③C.①→②→⑥D(zhuǎn).①→③→⑥

(3)函數(shù)的圖象可以經(jīng)過怎樣的變化得到函數(shù)的圖象?(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機抽查了10名參加2016年云南省初中學(xué)業(yè)水平考試學(xué)生的體育成績,得到的結(jié)果如表:

成績(分)

46

47

48

49

50

人數(shù)(人)

1

2

1

2

4

下列說法正確的是(
A.這10名同學(xué)的體育成績的眾數(shù)為50
B.這10名同學(xué)的體育成績的中位數(shù)為48
C.這10名同學(xué)的體育成績的方差為50
D.這10名同學(xué)的體育成績的平均數(shù)為48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子產(chǎn)品經(jīng)過11月、12月連續(xù)兩次降價,售價由3900元降到了2500元.設(shè)平均每月降價的百分率為x,根據(jù)題意列出的方程是(  )

A. 3900(1+x)2=2500 B. 3900(1﹣x)2=2500

C. 3900(1﹣2x)=2500 D. 2500(1+x)2=3900

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.

(1)求證:AB是⊙O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2+2x=4,配方結(jié)果正確的是(

A. (x+1)2=4 B. (x+2)2=4 C. (x+2)2=5 D. (x+1)2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點A(3,n)x軸上,則點B(n1,n1)(   )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案