【題目】閱讀如下材料,然后解答后面的問(wèn)題:已知直線l1:y=﹣2x﹣2和直線l2:y=﹣2x+4如圖所示,可以看到直線l1∥l2,且直線l2可以由直線l1向上平移6個(gè)長(zhǎng)度單位得到,直線l2可以由直線l1向右平移3個(gè)長(zhǎng)度單位得到.這樣,求直線l2的函數(shù)表達(dá)式,可以由直線l1的函數(shù)表達(dá)式直接得到.即:如果將直線l1向上平移6的長(zhǎng)度單位后得到l2,得l2的函數(shù)表達(dá)式為:y=﹣2x﹣2+6,即y=﹣2x+4;如果將直線l1向右平移3的長(zhǎng)度單位后得到得l2,l2的函數(shù)表達(dá)式為:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.
(1)將直線y=2x﹣3向上平移2個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是 ;
(2)將直線y=3x+1向右平移m(m>0)兩個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是 ;
(3)已知將直線y=x+1向左平移n(n>0)個(gè)長(zhǎng)度單位后得到直線y=x+5,則n= .
【答案】(1)y=2x﹣1;(2)y=3x﹣3m+1;(3)8
【解析】
(1)利用一次函數(shù)圖象上加下減的平移規(guī)律求解即可;
(2)利用一次函數(shù)圖象左加右減的平移規(guī)律求解即可;
(3)利用一次函數(shù)圖象左加右減的平移規(guī)律列出關(guān)于n的方程,求解即可.
(1)將直線y=2x﹣3向上平移2個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是y=2x﹣3+2,即y=2x﹣1.
故答案為y=2x﹣1;
(2)將直線y=3x+1向右平移m(m>0)兩個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是y=3(x﹣m)+1,即y=3x﹣3m+1.
故答案為y=3x﹣3m+1;
(3)∵將直線y=x+1向左平移n(n>0)個(gè)長(zhǎng)度單位后得到直線y=(x+n)+1,即y=x+n+1,
∴n+1=5,解得n=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的說(shuō)理過(guò)程:如圖,在四邊形中,,分別是,延長(zhǎng)線上的點(diǎn),連接,分別交,于點(diǎn),.已知,.對(duì)和說(shuō)明理由.
理由:(已知),
(______),
(等量代換).
(______).
(______).
(______),
(______).
(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校的大學(xué)生自愿者參與服務(wù)工作,計(jì)劃組織全校自愿者統(tǒng)一乘車去某地.若單獨(dú)調(diào)配座客車若干輛,則空出個(gè)座位,若只調(diào)配座客車若干輛,則用車數(shù)量將增加輛,并有人沒(méi)有座位.
(1)計(jì)劃調(diào)配座客車多少輛?該大學(xué)共有多少名自愿者?(列方程組解答)
(2)若同時(shí)調(diào)配座和座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A:0個(gè)學(xué)科,B:1個(gè)學(xué)科,C:2個(gè)學(xué)科,D:3個(gè)學(xué)科,E:4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是 個(gè)學(xué)科;
(3)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形OABC的頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,OA=18,OC=12,D、E分別為OA、BC上的兩點(diǎn),將長(zhǎng)方形OABC沿直線DE折疊后,點(diǎn)A剛好與點(diǎn)C重合,點(diǎn)B落在點(diǎn)F處,再將其打開(kāi)、展平.
(1)點(diǎn)B的坐標(biāo)是 ;
(2)求直線DE的函數(shù)表達(dá)式;
(3)設(shè)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿折線D→A→B→C向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,求當(dāng)S△PDE=2S△OCD時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在坐標(biāo)軸上,是的中點(diǎn),四邊形是矩形,四邊形是正方形,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC的平分線交AABC的外接圓于點(diǎn)D,交BC于點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E.
(1)求證:DE=DB.
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;
(3)若BD=6,DF=4,求AD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為的直徑,是外一點(diǎn),交于點(diǎn),過(guò)點(diǎn)作的切線,交于點(diǎn),,作于點(diǎn),交于點(diǎn).
求證:是的切線;
求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com